Socket
Socket
Sign inDemoInstall

filippo.io/age

Package Overview
Dependencies
4
Alerts
File Explorer

Install Socket

Detect and block malicious and high-risk dependencies

Install

    filippo.io/age

Package age implements file encryption according to the age-encryption.org/v1 specification. For most use cases, use the Encrypt and Decrypt functions with X25519Recipient and X25519Identity. If passphrase encryption is required, use ScryptRecipient and ScryptIdentity. For compatibility with existing SSH keys use the filippo.io/age/agessh package. age encrypted files are binary and not malleable. For encoding them as text, use the filippo.io/age/armor package. age does not have a global keyring. Instead, since age keys are small, textual, and cheap, you are encouraged to generate dedicated keys for each task and application. Recipient public keys can be passed around as command line flags and in config files, while secret keys should be stored in dedicated files, through secret management systems, or as environment variables. There is no default path for age keys. Instead, they should be stored at application-specific paths. The CLI supports files where private keys are listed one per line, ignoring empty lines and lines starting with "#". These files can be parsed with ParseIdentities. When integrating age into a new system, it's recommended that you only support X25519 keys, and not SSH keys. The latter are supported for manual encryption operations. If you need to tie into existing key management infrastructure, you might want to consider implementing your own Recipient and Identity. Files encrypted with a stable version (not alpha, beta, or release candidate) of age, or with any v1.0.0 beta or release candidate, will decrypt with any later versions of the v1 API. This might change in v2, in which case v1 will be maintained with security fixes for compatibility with older files. If decrypting an older file poses a security risk, doing so might require an explicit opt-in in the API.


Version published

Readme

Source

The age logo, an wireframe of St. Peters dome in Rome, with the text: age, file encryption

Go Reference man page C2SP specification

age is a simple, modern and secure file encryption tool, format, and Go library.

It features small explicit keys, no config options, and UNIX-style composability.

$ age-keygen -o key.txt
Public key: age1ql3z7hjy54pw3hyww5ayyfg7zqgvc7w3j2elw8zmrj2kg5sfn9aqmcac8p
$ tar cvz ~/data | age -r age1ql3z7hjy54pw3hyww5ayyfg7zqgvc7w3j2elw8zmrj2kg5sfn9aqmcac8p > data.tar.gz.age
$ age --decrypt -i key.txt data.tar.gz.age > data.tar.gz

📜 The format specification is at age-encryption.org/v1. age was designed by @Benjojo12 and @FiloSottile.

📬 Follow the maintenance of this project by subscribing to Maintainer Dispatches!

🦀 An alternative interoperable Rust implementation is available at github.com/str4d/rage.

🔑 Hardware PIV tokens such as YubiKeys are supported through the age-plugin-yubikey plugin.

💬 The author pronounces it [aɡe̞], like the Italian “aghe”.

Installation

Homebrew (macOS or Linux) brew install age
MacPorts port install age
Alpine Linux v3.15+ apk add age
Arch Linux pacman -S age
Debian 11+ (Bullseye) apt install age/bullseye-backports (enable backports for age v1.0.0+)
Fedora 33+ dnf install age
Gentoo Linux emerge app-crypt/age
NixOS / Nix nix-env -i age
openSUSE Tumbleweed zypper install age
Ubuntu 22.04+ apt install age
Void Linux xbps-install age
FreeBSD pkg install age (security/age)
OpenBSD 6.7+ pkg_add age (security/age)
Chocolatey (Windows) choco install age.portable
Scoop (Windows) scoop bucket add extras; scoop install age

On Windows, Linux, macOS, and FreeBSD you can use the pre-built binaries.

https://dl.filippo.io/age/latest?for=linux/amd64
https://dl.filippo.io/age/v1.0.0-rc.1?for=darwin/arm64
...

If your system has a supported version of Go, you can build from source.

go install filippo.io/age/cmd/...@latest

Help from new packagers is very welcome.

Usage

For the full documentation, read the age(1) man page.

Usage:
    age [--encrypt] (-r RECIPIENT | -R PATH)... [--armor] [-o OUTPUT] [INPUT]
    age [--encrypt] --passphrase [--armor] [-o OUTPUT] [INPUT]
    age --decrypt [-i PATH]... [-o OUTPUT] [INPUT]

Options:
    -e, --encrypt               Encrypt the input to the output. Default if omitted.
    -d, --decrypt               Decrypt the input to the output.
    -o, --output OUTPUT         Write the result to the file at path OUTPUT.
    -a, --armor                 Encrypt to a PEM encoded format.
    -p, --passphrase            Encrypt with a passphrase.
    -r, --recipient RECIPIENT   Encrypt to the specified RECIPIENT. Can be repeated.
    -R, --recipients-file PATH  Encrypt to recipients listed at PATH. Can be repeated.
    -i, --identity PATH         Use the identity file at PATH. Can be repeated.

INPUT defaults to standard input, and OUTPUT defaults to standard output.
If OUTPUT exists, it will be overwritten.

RECIPIENT can be an age public key generated by age-keygen ("age1...")
or an SSH public key ("ssh-ed25519 AAAA...", "ssh-rsa AAAA...").

Recipient files contain one or more recipients, one per line. Empty lines
and lines starting with "#" are ignored as comments. "-" may be used to
read recipients from standard input.

Identity files contain one or more secret keys ("AGE-SECRET-KEY-1..."),
one per line, or an SSH key. Empty lines and lines starting with "#" are
ignored as comments. Passphrase encrypted age files can be used as
identity files. Multiple key files can be provided, and any unused ones
will be ignored. "-" may be used to read identities from standard input.

When --encrypt is specified explicitly, -i can also be used to encrypt to an
identity file symmetrically, instead or in addition to normal recipients.

Multiple recipients

Files can be encrypted to multiple recipients by repeating -r/--recipient. Every recipient will be able to decrypt the file.

$ age -o example.jpg.age -r age1ql3z7hjy54pw3hyww5ayyfg7zqgvc7w3j2elw8zmrj2kg5sfn9aqmcac8p \
    -r age1lggyhqrw2nlhcxprm67z43rta597azn8gknawjehu9d9dl0jq3yqqvfafg example.jpg
Recipient files

Multiple recipients can also be listed one per line in one or more files passed with the -R/--recipients-file flag.

$ cat recipients.txt
# Alice
age1ql3z7hjy54pw3hyww5ayyfg7zqgvc7w3j2elw8zmrj2kg5sfn9aqmcac8p
# Bob
age1lggyhqrw2nlhcxprm67z43rta597azn8gknawjehu9d9dl0jq3yqqvfafg
$ age -R recipients.txt example.jpg > example.jpg.age

If the argument to -R (or -i) is -, the file is read from standard input.

Passphrases

Files can be encrypted with a passphrase by using -p/--passphrase. By default age will automatically generate a secure passphrase. Passphrase protected files are automatically detected at decrypt time.

$ age -p secrets.txt > secrets.txt.age
Enter passphrase (leave empty to autogenerate a secure one):
Using the autogenerated passphrase "release-response-step-brand-wrap-ankle-pair-unusual-sword-train".
$ age -d secrets.txt.age > secrets.txt
Enter passphrase:

Passphrase-protected key files

If an identity file passed to -i is a passphrase encrypted age file, it will be automatically decrypted.

$ age-keygen | age -p > key.age
Public key: age1yhm4gctwfmrpz87tdslm550wrx6m79y9f2hdzt0lndjnehwj0ukqrjpyx5
Enter passphrase (leave empty to autogenerate a secure one):
Using the autogenerated passphrase "hip-roast-boring-snake-mention-east-wasp-honey-input-actress".
$ age -r age1yhm4gctwfmrpz87tdslm550wrx6m79y9f2hdzt0lndjnehwj0ukqrjpyx5 secrets.txt > secrets.txt.age
$ age -d -i key.age secrets.txt.age > secrets.txt
Enter passphrase for identity file "key.age":

Passphrase-protected identity files are not necessary for most use cases, where access to the encrypted identity file implies access to the whole system. However, they can be useful if the identity file is stored remotely.

SSH keys

As a convenience feature, age also supports encrypting to ssh-rsa and ssh-ed25519 SSH public keys, and decrypting with the respective private key file. (ssh-agent is not supported.)

$ age -R ~/.ssh/id_ed25519.pub example.jpg > example.jpg.age
$ age -d -i ~/.ssh/id_ed25519 example.jpg.age > example.jpg

Note that SSH key support employs more complex cryptography, and embeds a public key tag in the encrypted file, making it possible to track files that are encrypted to a specific public key.

Encrypting to a GitHub user

Combining SSH key support and -R, you can easily encrypt a file to the SSH keys listed on a GitHub profile.

$ curl https://github.com/benjojo.keys | age -R - example.jpg > example.jpg.age

Keep in mind that people might not protect SSH keys long-term, since they are revokable when used only for authentication, and that SSH keys held on YubiKeys can't be used to decrypt files.

FAQs

Last updated on 26 Dec 2022

Did you know?

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc