Socket
Socket
Sign inDemoInstall

github.com/jackc/pgx

Package Overview
Dependencies
0
Alerts
File Explorer

Install Socket

Detect and block malicious and high-risk dependencies

Install

    github.com/jackc/pgx

Package pgx is a PostgreSQL database driver. pgx provides lower level access to PostgreSQL than the standard database/sql. It remains as similar to the database/sql interface as possible while providing better speed and access to PostgreSQL specific features. Import github.com/jackc/pgx/stdlib to use pgx as a database/sql compatible driver. pgx implements Query and Scan in the familiar database/sql style. pgx also implements QueryRow in the same style as database/sql. Use Exec to execute a query that does not return a result set. Connection pool usage is explicit and configurable. In pgx, a connection can be created and managed directly, or a connection pool with a configurable maximum connections can be used. The connection pool offers an after connect hook that allows every connection to be automatically setup before being made available in the connection pool. It delegates methods such as QueryRow to an automatically checked out and released connection so you can avoid manually acquiring and releasing connections when you do not need that level of control. pgx maps between all common base types directly between Go and PostgreSQL. In particular: pgx can map nulls in two ways. The first is package pgtype provides types that have a data field and a status field. They work in a similar fashion to database/sql. The second is to use a pointer to a pointer. pgx maps between int16, int32, int64, float32, float64, and string Go slices and the equivalent PostgreSQL array type. Go slices of native types do not support nulls, so if a PostgreSQL array that contains a null is read into a native Go slice an error will occur. The pgtype package includes many more array types for PostgreSQL types that do not directly map to native Go types. pgx includes built-in support to marshal and unmarshal between Go types and the PostgreSQL JSON and JSONB. pgx encodes from net.IPNet to and from inet and cidr PostgreSQL types. In addition, as a convenience pgx will encode from a net.IP; it will assume a /32 netmask for IPv4 and a /128 for IPv6. pgx includes support for the common data types like integers, floats, strings, dates, and times that have direct mappings between Go and SQL. In addition, pgx uses the github.com/jackc/pgx/pgtype library to support more types. See documention for that library for instructions on how to implement custom types. See example_custom_type_test.go for an example of a custom type for the PostgreSQL point type. pgx also includes support for custom types implementing the database/sql.Scanner and database/sql/driver.Valuer interfaces. If pgx does cannot natively encode a type and that type is a renamed type (e.g. type MyTime time.Time) pgx will attempt to encode the underlying type. While this is usually desired behavior it can produce suprising behavior if one the underlying type and the renamed type each implement database/sql interfaces and the other implements pgx interfaces. It is recommended that this situation be avoided by implementing pgx interfaces on the renamed type. []byte passed as arguments to Query, QueryRow, and Exec are passed unmodified to PostgreSQL. Transactions are started by calling Begin or BeginEx. The BeginEx variant can create a transaction with a specified isolation level. Use CopyFrom to efficiently insert multiple rows at a time using the PostgreSQL copy protocol. CopyFrom accepts a CopyFromSource interface. If the data is already in a [][]interface{} use CopyFromRows to wrap it in a CopyFromSource interface. Or implement CopyFromSource to avoid buffering the entire data set in memory. CopyFrom can be faster than an insert with as few as 5 rows. pgx can listen to the PostgreSQL notification system with the WaitForNotification function. It takes a maximum time to wait for a notification. The pgx ConnConfig struct has a TLSConfig field. If this field is nil, then TLS will be disabled. If it is present, then it will be used to configure the TLS connection. This allows total configuration of the TLS connection. pgx has never explicitly supported Postgres < 9.6's `ssl_renegotiation` option. As of v3.3.0, it doesn't send `ssl_renegotiation: 0` either to support Redshift (https://github.com/jackc/pgx/pull/476). If you need TLS Renegotiation, consider supplying `ConnConfig.TLSConfig` with a non-zero `Renegotiation` value and if it's not the default on your server, set `ssl_renegotiation` via `ConnConfig.RuntimeParams`. pgx defines a simple logger interface. Connections optionally accept a logger that satisfies this interface. Set LogLevel to control logging verbosity. Adapters for github.com/inconshreveable/log15, github.com/sirupsen/logrus, and the testing log are provided in the log directory.


Version published

Readme

Source

Build Status

pgx - PostgreSQL Driver and Toolkit

pgx is a pure Go driver and toolkit for PostgreSQL. pgx is different from other drivers such as pq because, while it can operate as a database/sql compatible driver, pgx is also usable directly. It offers a native interface similar to database/sql that offers better performance and more features.

var name string
var weight int64
err := conn.QueryRow("select name, weight from widgets where id=$1", 42).Scan(&name, &weight)
if err != nil {
    return err
}

v4

This is the v3 version. v4 has been released. Please use that for new development.

Features

pgx supports many additional features beyond what is available through database/sql.

  • Support for approximately 60 different PostgreSQL types
  • Batch queries
  • Single-round trip query mode
  • Full TLS connection control
  • Binary format support for custom types (can be much faster)
  • Copy protocol support for faster bulk data loads
  • Extendable logging support including built-in support for log15 and logrus
  • Connection pool with after connect hook to do arbitrary connection setup
  • Listen / notify
  • PostgreSQL array to Go slice mapping for integers, floats, and strings
  • Hstore support
  • JSON and JSONB support
  • Maps inet and cidr PostgreSQL types to net.IPNet and net.IP
  • Large object support
  • NULL mapping to Null* struct or pointer to pointer.
  • Supports database/sql.Scanner and database/sql/driver.Valuer interfaces for custom types
  • Logical replication connections, including receiving WAL and sending standby status updates
  • Notice response handling (this is different than listen / notify)

Performance

pgx performs roughly equivalent to go-pg and is almost always faster than pq. When parsing large result sets the percentage difference can be significant (16483 queries/sec for pgx vs. 10106 queries/sec for pq -- 63% faster).

In many use cases a significant cause of latency is network round trips between the application and the server. pgx supports query batching to bundle multiple queries into a single round trip. Even in the case of a connection with the lowest possible latency, a local Unix domain socket, batching as few as three queries together can yield an improvement of 57%. With a typical network connection the results can be even more substantial.

See this gist for the underlying benchmark results or checkout go_db_bench to run tests for yourself.

In addition to the native driver, pgx also includes a number of packages that provide additional functionality.

github.com/jackc/pgx/stdlib

database/sql compatibility layer for pgx. pgx can be used as a normal database/sql driver, but at any time the native interface may be acquired for more performance or PostgreSQL specific functionality.

github.com/jackc/pgx/pgtype

Approximately 60 PostgreSQL types are supported including uuid, hstore, json, bytea, numeric, interval, inet, and arrays. These types support database/sql interfaces and are usable even outside of pgx. They are fully tested in pgx and pq. They also support a higher performance interface when used with the pgx driver.

github.com/jackc/pgx/pgproto3

pgproto3 provides standalone encoding and decoding of the PostgreSQL v3 wire protocol. This is useful for implementing very low level PostgreSQL tooling.

github.com/jackc/pgx/pgmock

pgmock offers the ability to create a server that mocks the PostgreSQL wire protocol. This is used internally to test pgx by purposely inducing unusual errors. pgproto3 and pgmock together provide most of the foundational tooling required to implement a PostgreSQL proxy or MitM (such as for a custom connection pooler).

Documentation

pgx includes extensive documentation in the godoc format. It is viewable online at godoc.org.

Testing

pgx supports multiple connection and authentication types. Setting up a test environment that can test all of them can be cumbersome. In particular, Windows cannot test Unix domain socket connections. Because of this pgx will skip tests for connection types that are not configured.

Normal Test Environment

To setup the normal test environment, first install these dependencies:

go get github.com/cockroachdb/apd
go get github.com/gofrs/uuid
go get github.com/hashicorp/go-version
go get github.com/jackc/fake
go get github.com/lib/pq
go get github.com/pkg/errors
go get github.com/shopspring/decimal
go get github.com/sirupsen/logrus
go get go.uber.org/zap
go get gopkg.in/inconshreveable/log15.v2

Then run the following SQL:

create user pgx_md5 password 'secret';
create user " tricky, ' } "" \ test user " password 'secret';
create database pgx_test;
create user pgx_replication with replication password 'secret';

Connect to database pgx_test and run:

create extension hstore;
create domain uint64 as numeric(20,0);

Next open conn_config_test.go.example and make a copy without the .example. If your PostgreSQL server is accepting connections on 127.0.0.1, then you are done.

Connection and Authentication Test Environment

Complete the normal test environment setup and also do the following.

Run the following SQL:

create user pgx_none;
create user pgx_pw password 'secret';

Add the following to your pg_hba.conf:

If you are developing on Unix with domain socket connections:

local  pgx_test  pgx_none  trust
local  pgx_test  pgx_pw    password
local  pgx_test  pgx_md5   md5

If you are developing on Windows with TCP connections:

host  pgx_test  pgx_none  127.0.0.1/32 trust
host  pgx_test  pgx_pw    127.0.0.1/32 password
host  pgx_test  pgx_md5   127.0.0.1/32 md5

Replication Test Environment

Add a replication user:

create user pgx_replication with replication password 'secret';

Add a replication line to your pg_hba.conf:

host replication pgx_replication 127.0.0.1/32 md5

Change the following settings in your postgresql.conf:

wal_level=logical
max_wal_senders=5
max_replication_slots=5

Set replicationConnConfig appropriately in conn_config_test.go.

Version Policy

pgx follows semantic versioning for the documented public API on stable releases. Branch v3 is the latest stable release. master can contain new features or behavior that will change or be removed before being merged to the stable v3 branch (in practice, this occurs very rarely). v2 is the previous stable release.

FAQs

Last updated on 24 Jan 2020

Did you know?

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc