fasthttp
Fast HTTP implementation for Go.
fasthttp might not be for you!
fasthttp was designed for some high performance edge cases. Unless your server/client needs to handle thousands of small to medium requests per second and needs a consistent low millisecond response time fasthttp might not be for you. For most cases net/http
is much better as it's easier to use and can handle more cases. For most cases you won't even notice the performance difference.
General info and links
Currently fasthttp is successfully used by VertaMedia
in a production serving up to 200K rps from more than 1.5M concurrent keep-alive
connections per physical server.
TechEmpower Benchmark round 19 results
Server Benchmarks
Client Benchmarks
Install
Documentation
Examples from docs
Code examples
Awesome fasthttp tools
Switching from net/http to fasthttp
Fasthttp best practices
Tricks with byte buffers
Related projects
FAQ
HTTP server performance comparison with net/http
In short, fasthttp server is up to 10 times faster than net/http.
Below are benchmark results.
GOMAXPROCS=1
net/http server:
$ GOMAXPROCS=1 go test -bench=NetHTTPServerGet -benchmem -benchtime=10s
BenchmarkNetHTTPServerGet1ReqPerConn 1000000 12052 ns/op 2297 B/op 29 allocs/op
BenchmarkNetHTTPServerGet2ReqPerConn 1000000 12278 ns/op 2327 B/op 24 allocs/op
BenchmarkNetHTTPServerGet10ReqPerConn 2000000 8903 ns/op 2112 B/op 19 allocs/op
BenchmarkNetHTTPServerGet10KReqPerConn 2000000 8451 ns/op 2058 B/op 18 allocs/op
BenchmarkNetHTTPServerGet1ReqPerConn10KClients 500000 26733 ns/op 3229 B/op 29 allocs/op
BenchmarkNetHTTPServerGet2ReqPerConn10KClients 1000000 23351 ns/op 3211 B/op 24 allocs/op
BenchmarkNetHTTPServerGet10ReqPerConn10KClients 1000000 13390 ns/op 2483 B/op 19 allocs/op
BenchmarkNetHTTPServerGet100ReqPerConn10KClients 1000000 13484 ns/op 2171 B/op 18 allocs/op
fasthttp server:
$ GOMAXPROCS=1 go test -bench=kServerGet -benchmem -benchtime=10s
BenchmarkServerGet1ReqPerConn 10000000 1559 ns/op 0 B/op 0 allocs/op
BenchmarkServerGet2ReqPerConn 10000000 1248 ns/op 0 B/op 0 allocs/op
BenchmarkServerGet10ReqPerConn 20000000 797 ns/op 0 B/op 0 allocs/op
BenchmarkServerGet10KReqPerConn 20000000 716 ns/op 0 B/op 0 allocs/op
BenchmarkServerGet1ReqPerConn10KClients 10000000 1974 ns/op 0 B/op 0 allocs/op
BenchmarkServerGet2ReqPerConn10KClients 10000000 1352 ns/op 0 B/op 0 allocs/op
BenchmarkServerGet10ReqPerConn10KClients 20000000 789 ns/op 2 B/op 0 allocs/op
BenchmarkServerGet100ReqPerConn10KClients 20000000 604 ns/op 0 B/op 0 allocs/op
GOMAXPROCS=4
net/http server:
$ GOMAXPROCS=4 go test -bench=NetHTTPServerGet -benchmem -benchtime=10s
BenchmarkNetHTTPServerGet1ReqPerConn-4 3000000 4529 ns/op 2389 B/op 29 allocs/op
BenchmarkNetHTTPServerGet2ReqPerConn-4 5000000 3896 ns/op 2418 B/op 24 allocs/op
BenchmarkNetHTTPServerGet10ReqPerConn-4 5000000 3145 ns/op 2160 B/op 19 allocs/op
BenchmarkNetHTTPServerGet10KReqPerConn-4 5000000 3054 ns/op 2065 B/op 18 allocs/op
BenchmarkNetHTTPServerGet1ReqPerConn10KClients-4 1000000 10321 ns/op 3710 B/op 30 allocs/op
BenchmarkNetHTTPServerGet2ReqPerConn10KClients-4 2000000 7556 ns/op 3296 B/op 24 allocs/op
BenchmarkNetHTTPServerGet10ReqPerConn10KClients-4 5000000 3905 ns/op 2349 B/op 19 allocs/op
BenchmarkNetHTTPServerGet100ReqPerConn10KClients-4 5000000 3435 ns/op 2130 B/op 18 allocs/op
fasthttp server:
$ GOMAXPROCS=4 go test -bench=kServerGet -benchmem -benchtime=10s
BenchmarkServerGet1ReqPerConn-4 10000000 1141 ns/op 0 B/op 0 allocs/op
BenchmarkServerGet2ReqPerConn-4 20000000 707 ns/op 0 B/op 0 allocs/op
BenchmarkServerGet10ReqPerConn-4 30000000 341 ns/op 0 B/op 0 allocs/op
BenchmarkServerGet10KReqPerConn-4 50000000 310 ns/op 0 B/op 0 allocs/op
BenchmarkServerGet1ReqPerConn10KClients-4 10000000 1119 ns/op 0 B/op 0 allocs/op
BenchmarkServerGet2ReqPerConn10KClients-4 20000000 644 ns/op 0 B/op 0 allocs/op
BenchmarkServerGet10ReqPerConn10KClients-4 30000000 346 ns/op 0 B/op 0 allocs/op
BenchmarkServerGet100ReqPerConn10KClients-4 50000000 282 ns/op 0 B/op 0 allocs/op
HTTP client comparison with net/http
In short, fasthttp client is up to 10 times faster than net/http.
Below are benchmark results.
GOMAXPROCS=1
net/http client:
$ GOMAXPROCS=1 go test -bench='HTTPClient(Do|GetEndToEnd)' -benchmem -benchtime=10s
BenchmarkNetHTTPClientDoFastServer 1000000 12567 ns/op 2616 B/op 35 allocs/op
BenchmarkNetHTTPClientGetEndToEnd1TCP 200000 67030 ns/op 5028 B/op 56 allocs/op
BenchmarkNetHTTPClientGetEndToEnd10TCP 300000 51098 ns/op 5031 B/op 56 allocs/op
BenchmarkNetHTTPClientGetEndToEnd100TCP 300000 45096 ns/op 5026 B/op 55 allocs/op
BenchmarkNetHTTPClientGetEndToEnd1Inmemory 500000 24779 ns/op 5035 B/op 57 allocs/op
BenchmarkNetHTTPClientGetEndToEnd10Inmemory 1000000 26425 ns/op 5035 B/op 57 allocs/op
BenchmarkNetHTTPClientGetEndToEnd100Inmemory 500000 28515 ns/op 5045 B/op 57 allocs/op
BenchmarkNetHTTPClientGetEndToEnd1000Inmemory 500000 39511 ns/op 5096 B/op 56 allocs/op
fasthttp client:
$ GOMAXPROCS=1 go test -bench='kClient(Do|GetEndToEnd)' -benchmem -benchtime=10s
BenchmarkClientDoFastServer 20000000 865 ns/op 0 B/op 0 allocs/op
BenchmarkClientGetEndToEnd1TCP 1000000 18711 ns/op 0 B/op 0 allocs/op
BenchmarkClientGetEndToEnd10TCP 1000000 14664 ns/op 0 B/op 0 allocs/op
BenchmarkClientGetEndToEnd100TCP 1000000 14043 ns/op 1 B/op 0 allocs/op
BenchmarkClientGetEndToEnd1Inmemory 5000000 3965 ns/op 0 B/op 0 allocs/op
BenchmarkClientGetEndToEnd10Inmemory 3000000 4060 ns/op 0 B/op 0 allocs/op
BenchmarkClientGetEndToEnd100Inmemory 5000000 3396 ns/op 0 B/op 0 allocs/op
BenchmarkClientGetEndToEnd1000Inmemory 5000000 3306 ns/op 2 B/op 0 allocs/op
GOMAXPROCS=4
net/http client:
$ GOMAXPROCS=4 go test -bench='HTTPClient(Do|GetEndToEnd)' -benchmem -benchtime=10s
BenchmarkNetHTTPClientDoFastServer-4 2000000 8774 ns/op 2619 B/op 35 allocs/op
BenchmarkNetHTTPClientGetEndToEnd1TCP-4 500000 22951 ns/op 5047 B/op 56 allocs/op
BenchmarkNetHTTPClientGetEndToEnd10TCP-4 1000000 19182 ns/op 5037 B/op 55 allocs/op
BenchmarkNetHTTPClientGetEndToEnd100TCP-4 1000000 16535 ns/op 5031 B/op 55 allocs/op
BenchmarkNetHTTPClientGetEndToEnd1Inmemory-4 1000000 14495 ns/op 5038 B/op 56 allocs/op
BenchmarkNetHTTPClientGetEndToEnd10Inmemory-4 1000000 10237 ns/op 5034 B/op 56 allocs/op
BenchmarkNetHTTPClientGetEndToEnd100Inmemory-4 1000000 10125 ns/op 5045 B/op 56 allocs/op
BenchmarkNetHTTPClientGetEndToEnd1000Inmemory-4 1000000 11132 ns/op 5136 B/op 56 allocs/op
fasthttp client:
$ GOMAXPROCS=4 go test -bench='kClient(Do|GetEndToEnd)' -benchmem -benchtime=10s
BenchmarkClientDoFastServer-4 50000000 397 ns/op 0 B/op 0 allocs/op
BenchmarkClientGetEndToEnd1TCP-4 2000000 7388 ns/op 0 B/op 0 allocs/op
BenchmarkClientGetEndToEnd10TCP-4 2000000 6689 ns/op 0 B/op 0 allocs/op
BenchmarkClientGetEndToEnd100TCP-4 3000000 4927 ns/op 1 B/op 0 allocs/op
BenchmarkClientGetEndToEnd1Inmemory-4 10000000 1604 ns/op 0 B/op 0 allocs/op
BenchmarkClientGetEndToEnd10Inmemory-4 10000000 1458 ns/op 0 B/op 0 allocs/op
BenchmarkClientGetEndToEnd100Inmemory-4 10000000 1329 ns/op 0 B/op 0 allocs/op
BenchmarkClientGetEndToEnd1000Inmemory-4 10000000 1316 ns/op 5 B/op 0 allocs/op
Install
go get -u github.com/valyala/fasthttp
Switching from net/http to fasthttp
Unfortunately, fasthttp doesn't provide API identical to net/http.
See the FAQ for details.
There is net/http -> fasthttp handler converter,
but it is better to write fasthttp request handlers by hand in order to use
all of the fasthttp advantages (especially high performance :) ).
Important points:
-
Fasthttp works with RequestHandler functions
instead of objects implementing Handler interface.
Fortunately, it is easy to pass bound struct methods to fasthttp:
type MyHandler struct {
foobar string
}
func (h *MyHandler) HandleFastHTTP(ctx *fasthttp.RequestCtx) {
fmt.Fprintf(ctx, "Hello, world! Requested path is %q. Foobar is %q",
ctx.Path(), h.foobar)
}
func fastHTTPHandler(ctx *fasthttp.RequestCtx) {
fmt.Fprintf(ctx, "Hi there! RequestURI is %q", ctx.RequestURI())
}
myHandler := &MyHandler{
foobar: "foobar",
}
fasthttp.ListenAndServe(":8080", myHandler.HandleFastHTTP)
fasthttp.ListenAndServe(":8081", fastHTTPHandler)
-
The RequestHandler
accepts only one argument - RequestCtx.
It contains all the functionality required for http request processing
and response writing. Below is an example of a simple request handler conversion
from net/http to fasthttp.
requestHandler := func(w http.ResponseWriter, r *http.Request) {
switch r.URL.Path {
case "/foo":
fooHandler(w, r)
case "/bar":
barHandler(w, r)
default:
http.Error(w, "Unsupported path", http.StatusNotFound)
}
}
requestHandler := func(ctx *fasthttp.RequestCtx) {
switch string(ctx.Path()) {
case "/foo":
fooHandler(ctx)
case "/bar":
barHandler(ctx)
default:
ctx.Error("Unsupported path", fasthttp.StatusNotFound)
}
}
-
Fasthttp allows setting response headers and writing response body
in an arbitrary order. There is no 'headers first, then body' restriction
like in net/http. The following code is valid for fasthttp:
requestHandler := func(ctx *fasthttp.RequestCtx) {
ctx.SetContentType("foo/bar")
ctx.SetStatusCode(fasthttp.StatusOK)
fmt.Fprintf(ctx, "this is the first part of body\n")
ctx.Response.Header.Set("Foo-Bar", "baz")
fmt.Fprintf(ctx, "this is the second part of body\n")
ctx.SetBody([]byte("this is completely new body contents"))
ctx.SetStatusCode(fasthttp.StatusNotFound)
}
-
Fasthttp doesn't provide ServeMux,
but there are more powerful third-party routers and web frameworks
with fasthttp support:
Net/http code with simple ServeMux is trivially converted to fasthttp code:
m := &http.ServeMux{}
m.HandleFunc("/foo", fooHandlerFunc)
m.HandleFunc("/bar", barHandlerFunc)
m.Handle("/baz", bazHandler)
http.ListenAndServe(":80", m)
m := func(ctx *fasthttp.RequestCtx) {
switch string(ctx.Path()) {
case "/foo":
fooHandlerFunc(ctx)
case "/bar":
barHandlerFunc(ctx)
case "/baz":
bazHandler.HandlerFunc(ctx)
default:
ctx.Error("not found", fasthttp.StatusNotFound)
}
}
fasthttp.ListenAndServe(":80", m)
-
Because creating a new channel for every request is just too expensive, so the channel returned by RequestCtx.Done() is only closed when the server is shutting down.
func main() {
fasthttp.ListenAndServe(":8080", fasthttp.TimeoutHandler(func(ctx *fasthttp.RequestCtx) {
select {
case <-ctx.Done():
log.Println("context cancelled")
return
case <-time.After(10 * time.Second):
log.Println("process finished ok")
}
}, time.Second*2, "timeout"))
}
-
net/http -> fasthttp conversion table:
- All the pseudocode below assumes w, r and ctx have these types:
var (
w http.ResponseWriter
r *http.Request
ctx *fasthttp.RequestCtx
)
-
VERY IMPORTANT! Fasthttp disallows holding references
to RequestCtx or to its'
members after returning from RequestHandler.
Otherwise data races are inevitable.
Carefully inspect all the net/http request handlers converted to fasthttp whether
they retain references to RequestCtx or to its' members after returning.
RequestCtx provides the following band aids for this case:
- Wrap RequestHandler into TimeoutHandler.
- Call TimeoutError
before returning from RequestHandler if there are references to RequestCtx or to its' members.
See the example
for more details.
Use this brilliant tool - race detector -
for detecting and eliminating data races in your program. If you detected
data race related to fasthttp in your program, then there is high probability
you forgot calling TimeoutError
before returning from RequestHandler.
Performance optimization tips for multi-core systems
- Use reuseport listener.
- Run a separate server instance per CPU core with GOMAXPROCS=1.
- Pin each server instance to a separate CPU core using taskset.
- Ensure the interrupts of multiqueue network card are evenly distributed between CPU cores.
See this article for details.
- Use the latest version of Go as each version contains performance improvements.
Fasthttp best practices
- Do not allocate objects and
[]byte
buffers - just reuse them as much
as possible. Fasthttp API design encourages this. - sync.Pool is your best friend.
- Profile your program
in production.
go tool pprof --alloc_objects your-program mem.pprof
usually gives better
insights for optimization opportunities than go tool pprof your-program cpu.pprof
. - Write tests and benchmarks for hot paths.
- Avoid conversion between
[]byte
and string
, since this may result in memory
allocation+copy. Fasthttp API provides functions for both []byte
and string
-
use these functions instead of converting manually between []byte
and string
.
There are some exceptions - see this wiki page
for more details. - Verify your tests and production code under
race detector on a regular basis.
- Prefer quicktemplate instead of
html/template in your webserver.
Tricks with []byte
buffers
The following tricks are used by fasthttp. Use them in your code too.
- Standard Go functions accept nil buffers
var (
dst []byte
src []byte
)
dst = append(dst, src...)
copy(dst, src)
(string(src) == "")
(len(src) == 0)
src = src[:0]
for i, ch := range src {
doSomething(i, ch)
}
So throw away nil checks for []byte
buffers from you code. For example,
srcLen := 0
if src != nil {
srcLen = len(src)
}
becomes
srcLen := len(src)
- String may be appended to
[]byte
buffer with append
dst = append(dst, "foobar"...)
[]byte
buffer may be extended to its' capacity.
buf := make([]byte, 100)
a := buf[:10]
b := a[:100]
- All fasthttp functions accept nil
[]byte
buffer
statusCode, body, err := fasthttp.Get(nil, "http://google.com/")
uintBuf := fasthttp.AppendUint(nil, 1234)
- String and
[]byte
buffers may converted without memory allocations
func b2s(b []byte) string {
return *(*string)(unsafe.Pointer(&b))
}
func s2b(s string) (b []byte) {
bh := (*reflect.SliceHeader)(unsafe.Pointer(&b))
sh := (*reflect.StringHeader)(unsafe.Pointer(&s))
bh.Data = sh.Data
bh.Cap = sh.Len
bh.Len = sh.Len
return b
}
Warning:
This is an unsafe way, the result string and []byte
buffer share the same bytes.
Please make sure not to modify the bytes in the []byte
buffer if the string still survives!
Related projects
- fasthttp - various useful
helpers for projects based on fasthttp.
- fasthttp-routing - fast and
powerful routing package for fasthttp servers.
- http2 - HTTP/2 implementation for fasthttp.
- router - a high
performance fasthttp request router that scales well.
- fastws - Bloatless WebSocket package made for fasthttp
to handle Read/Write operations concurrently.
- gramework - a web framework made by one of fasthttp maintainers
- lu - a high performance
go middleware web framework which is based on fasthttp.
- websocket - Gorilla-based
websocket implementation for fasthttp.
- websocket - Event-based high-performance WebSocket library for zero-allocation
websocket servers and clients.
- fasthttpsession - a fast and powerful session package for fasthttp servers.
- atreugo - High performance and extensible micro web framework with zero memory allocations in hot paths.
- kratgo - Simple, lightweight and ultra-fast HTTP Cache to speed up your websites.
- kit-plugins - go-kit transport implementation for fasthttp.
- Fiber - An Expressjs inspired web framework running on Fasthttp
- Gearbox - :gear: gearbox is a web framework written in Go with a focus on high performance and memory optimization
- http2curl - A tool to convert fasthttp requests to curl command line
FAQ
-
Why creating yet another http package instead of optimizing net/http?
Because net/http API limits many optimization opportunities.
For example:
- net/http Request object lifetime isn't limited by request handler execution
time. So the server must create a new request object per each request instead
of reusing existing objects like fasthttp does.
- net/http headers are stored in a
map[string][]string
. So the server
must parse all the headers, convert them from []byte
to string
and put
them into the map before calling user-provided request handler.
This all requires unnecessary memory allocations avoided by fasthttp. - net/http client API requires creating a new response object per each request.
-
Why fasthttp API is incompatible with net/http?
Because net/http API limits many optimization opportunities. See the answer
above for more details. Also certain net/http API parts are suboptimal
for use:
-
Why fasthttp doesn't support HTTP/2.0 and WebSockets?
HTTP/2.0 support is in progress. WebSockets has been done already.
Third parties also may use RequestCtx.Hijack
for implementing these goodies.
-
Are there known net/http advantages comparing to fasthttp?
Yes:
- net/http supports HTTP/2.0 starting from go1.6.
- net/http API is stable, while fasthttp API constantly evolves.
- net/http handles more HTTP corner cases.
- net/http can stream both request and response bodies
- net/http can handle bigger bodies as it doesn't read the whole body into memory
- net/http should contain less bugs, since it is used and tested by much
wider audience.
-
Why fasthttp API prefers returning []byte
instead of string
?
Because []byte
to string
conversion isn't free - it requires memory
allocation and copy. Feel free wrapping returned []byte
result into
string()
if you prefer working with strings instead of byte slices.
But be aware that this has non-zero overhead.
-
Which GO versions are supported by fasthttp?
Go 1.15.x. Older versions won't be supported.
-
Please provide real benchmark data and server information
See this issue.
-
Are there plans to add request routing to fasthttp?
There are no plans to add request routing into fasthttp.
Use third-party routers and web frameworks with fasthttp support:
See also this issue for more info.
-
I detected data race in fasthttp!
Cool! File a bug. But before
doing this check the following in your code:
-
I didn't find an answer for my question here
Try exploring these questions.