Security News
Research
Data Theft Repackaged: A Case Study in Malicious Wrapper Packages on npm
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
@azure/monitor-query
Advanced tools
An isomorphic client library for querying Azure Monitor's Logs and Metrics data sources.
The Azure Monitor Query client library is used to execute read-only queries against Azure Monitor's two data platforms:
Resources:
For more information, see our support policy.
Install the Azure Monitor Query client library for JavaScript with npm:
npm install --save @azure/monitor-query
An authenticated client is required to query Logs or Metrics. To authenticate, the following example uses DefaultAzureCredential from the @azure/identity package.
import { DefaultAzureCredential } from "@azure/identity";
import { LogsQueryClient, MetricsQueryClient, MetricsBatchQueryClient } from "@azure/monitor-query";
const credential = new DefaultAzureCredential();
const logsQueryClient: LogsQueryClient = new LogsQueryClient(credential);
// or
const metricsQueryClient: MetricsQueryClient = new MetricsQueryClient(credential);
// or
const endPoint: string = "<YOUR_METRICS_ENDPOINT>"; //for example, https://eastus.metrics.monitor.azure.com/
const metricsQueryClient: MetricsQueryClient = new MetricsQueryClient(endPoint, credential);
By default, the library's clients are configured to use the Azure Public Cloud. To use a sovereign cloud instead, provide the correct endpoint and audience value when instantiating a client. For example:
import { DefaultAzureCredential } from "@azure/identity";
import { LogsQueryClient, MetricsQueryClient, MetricsClient } from "@azure/monitor-query";
const credential = new DefaultAzureCredential();
const logsQueryClient: LogsQueryClient = new LogsQueryClient(credential, {
endpoint: "https://api.loganalytics.azure.cn/v1",
audience: "https://api.loganalytics.azure.cn/.default",
});
// or
const metricsQueryClient: MetricsQueryClient = new MetricsQueryClient(credential, {
endpoint: "https://management.chinacloudapi.cn",
audience: "https://monitor.azure.cn/.default",
});
// or
const endPoint: string = "<YOUR_METRICS_ENDPOINT>"; //for example, https://eastus.metrics.monitor.azure.com/
const metricsClient: MetricsClient = new MetricsClient(endPoint, credential, {
audience: "https://monitor.azure.cn/.default",
});
Note: Currently, MetricsQueryClient
uses the Azure Resource Manager (ARM) endpoint for querying metrics. You need the corresponding management endpoint for your cloud when using this client. This detail is subject to change in the future.
For examples of Logs and Metrics queries, see the Examples section.
The Log Analytics service applies throttling when the request rate is too high. Limits, such as the maximum number of rows returned, are also applied on the Kusto queries. For more information, see Query API.
Each set of metric values is a time series with the following characteristics:
The LogsQueryClient
can be used to query a Log Analytics workspace using the Kusto Query Language. The timespan.duration
can be specified as a string in an ISO 8601 duration format. You can use the Durations
constants provided for some commonly used ISO 8601 durations.
You can query logs by Log Analytics workspace ID or Azure resource ID. The result is returned as a table with a collection of rows.
To query by workspace ID, use the LogsQueryClient.queryWorkspace
method:
import { DefaultAzureCredential } from "@azure/identity";
import { Durations, LogsQueryClient, LogsQueryResultStatus, LogsTable } from "@azure/monitor-query";
const azureLogAnalyticsWorkspaceId = "<the Workspace Id for your Azure Log Analytics resource>";
const logsQueryClient = new LogsQueryClient(new DefaultAzureCredential());
async function run() {
const kustoQuery = "AppEvents | limit 1";
const result = await logsQueryClient.queryWorkspace(azureLogAnalyticsWorkspaceId, kustoQuery, {
duration: Durations.twentyFourHours,
});
if (result.status === LogsQueryResultStatus.Success) {
const tablesFromResult: LogsTable[] = result.tables;
if (tablesFromResult.length === 0) {
console.log(`No results for query '${kustoQuery}'`);
return;
}
console.log(`This query has returned table(s) - `);
processTables(tablesFromResult);
} else {
console.log(`Error processing the query '${kustoQuery}' - ${result.partialError}`);
if (result.partialTables.length > 0) {
console.log(`This query has also returned partial data in the following table(s) - `);
processTables(result.partialTables);
}
}
}
async function processTables(tablesFromResult: LogsTable[]) {
for (const table of tablesFromResult) {
const columnHeaderString = table.columnDescriptors
.map((column) => `${column.name}(${column.type}) `)
.join("| ");
console.log("| " + columnHeaderString);
for (const row of table.rows) {
const columnValuesString = row.map((columnValue) => `'${columnValue}' `).join("| ");
console.log("| " + columnValuesString);
}
}
}
run().catch((err) => console.log("ERROR:", err));
The following example demonstrates how to query logs directly from an Azure resource. Here, the queryResource
method is used and an Azure resource ID is passed in. For example, /subscriptions/{subscription-id}/resourceGroups/{resource-group-name}/providers/{resource-provider}/{resource-type}/{resource-name}
.
To find the resource ID:
id
property./**
* @summary Demonstrates how to run a query against a Log Analytics workspace, using an Azure resource ID.
*/
import { DefaultAzureCredential } from "@azure/identity";
import {
Durations,
LogsQueryClient,
LogsTable,
LogsQueryOptions,
LogsQueryResultStatus,
} from "@azure/monitor-query";
import * as dotenv from "dotenv";
dotenv.config();
const logsResourceId = process.env.LOGS_RESOURCE_ID;
export async function main() {
const tokenCredential = new DefaultAzureCredential();
const logsQueryClient = new LogsQueryClient(tokenCredential);
if (!logsResourceId) {
throw new Error("LOGS_RESOURCE_ID must be set in the environment for this sample");
}
const kustoQuery = `MyTable_CL | summarize count()`;
console.log(`Running '${kustoQuery}' over the last One Hour`);
const queryLogsOptions: LogsQueryOptions = {
// explicitly control the amount of time the server can spend processing the query.
serverTimeoutInSeconds: 600, // sets the timeout to 10 minutes
// optionally enable returning additional statistics about the query's execution.
// (by default, this is off)
includeQueryStatistics: true,
};
const result = await logsQueryClient.queryResource(
logsResourceId,
kustoQuery,
{ duration: Durations.sevenDays },
queryLogsOptions,
);
const executionTime =
result.statistics && result.statistics.query && (result.statistics.query as any).executionTime;
console.log(
`Results for query '${kustoQuery}', execution time: ${
executionTime == null ? "unknown" : executionTime
}`,
);
if (result.status === LogsQueryResultStatus.Success) {
const tablesFromResult: LogsTable[] = result.tables;
if (tablesFromResult.length === 0) {
console.log(`No results for query '${kustoQuery}'`);
return;
}
console.log(`This query has returned table(s) - `);
processTables(tablesFromResult);
} else {
console.log(`Error processing the query '${kustoQuery}' - ${result.partialError}`);
if (result.partialTables.length > 0) {
console.log(`This query has also returned partial data in the following table(s) - `);
processTables(result.partialTables);
}
}
}
async function processTables(tablesFromResult: LogsTable[]) {
for (const table of tablesFromResult) {
const columnHeaderString = table.columnDescriptors
.map((column) => `${column.name}(${column.type}) `)
.join("| ");
console.log("| " + columnHeaderString);
for (const row of table.rows) {
const columnValuesString = row.map((columnValue) => `'${columnValue}' `).join("| ");
console.log("| " + columnValuesString);
}
}
}
main().catch((err) => {
console.error("The sample encountered an error:", err);
process.exit(1);
});
The queryWorkspace
function of LogsQueryClient
returns a LogsQueryResult
object. The object type can be LogsQuerySuccessfulResult
or LogsQueryPartialResult
. Here's a hierarchy of the response:
LogsQuerySuccessfulResult
|---statistics
|---visualization
|---status ("Success")
|---tables (list of `LogsTable` objects)
|---name
|---rows
|---columnDescriptors (list of `LogsColumn` objects)
|---name
|---type
LogsQueryPartialResult
|---statistics
|---visualization
|---status ("PartialFailure")
|---partialError
|--name
|--code
|--message
|--stack
|---partialTables (list of `LogsTable` objects)
|---name
|---rows
|---columnDescriptors (list of `LogsColumn` objects)
|---name
|---type
For example, to handle a response with tables:
async function processTables(tablesFromResult: LogsTable[]) {
for (const table of tablesFromResult) {
const columnHeaderString = table.columnDescriptors
.map((column) => `${column.name}(${column.type}) `)
.join("| ");
console.log("| " + columnHeaderString);
for (const row of table.rows) {
const columnValuesString = row.map((columnValue) => `'${columnValue}' `).join("| ");
console.log("| " + columnValuesString);
}
}
}
A full sample can be found here.
The following example demonstrates sending multiple queries at the same time using the batch query API. The queries can be represented as a list of BatchQuery
objects.
export async function main() {
if (!monitorWorkspaceId) {
throw new Error("MONITOR_WORKSPACE_ID must be set in the environment for this sample");
}
const tokenCredential = new DefaultAzureCredential();
const logsQueryClient = new LogsQueryClient(tokenCredential);
const kqlQuery = "AppEvents | project TimeGenerated, Name, AppRoleInstance | limit 1";
const queriesBatch = [
{
workspaceId: monitorWorkspaceId,
query: kqlQuery,
timespan: { duration: "P1D" },
},
{
workspaceId: monitorWorkspaceId,
query: "AzureActivity | summarize count()",
timespan: { duration: "PT1H" },
},
{
workspaceId: monitorWorkspaceId,
query:
"AppRequests | take 10 | summarize avgRequestDuration=avg(DurationMs) by bin(TimeGenerated, 10m), _ResourceId",
timespan: { duration: "PT1H" },
},
{
workspaceId: monitorWorkspaceId,
query: "AppRequests | take 2",
timespan: { duration: "PT1H" },
includeQueryStatistics: true,
},
];
const result = await logsQueryClient.queryBatch(queriesBatch);
if (result == null) {
throw new Error("No response for query");
}
let i = 0;
for (const response of result) {
console.log(`Results for query with query: ${queriesBatch[i]}`);
if (response.status === LogsQueryResultStatus.Success) {
console.log(
`Printing results from query '${queriesBatch[i].query}' for '${queriesBatch[i].timespan}'`,
);
processTables(response.tables);
} else if (response.status === LogsQueryResultStatus.PartialFailure) {
console.log(
`Printing partial results from query '${queriesBatch[i].query}' for '${queriesBatch[i].timespan}'`,
);
processTables(response.partialTables);
console.log(
` Query had errors:${response.partialError.message} with code ${response.partialError.code}`,
);
} else {
console.log(`Printing errors from query '${queriesBatch[i].query}'`);
console.log(` Query had errors:${response.message} with code ${response.code}`);
}
// next query
i++;
}
}
async function processTables(tablesFromResult: LogsTable[]) {
for (const table of tablesFromResult) {
const columnHeaderString = table.columnDescriptors
.map((column) => `${column.name}(${column.type}) `)
.join("| ");
console.log("| " + columnHeaderString);
for (const row of table.rows) {
const columnValuesString = row.map((columnValue) => `'${columnValue}' `).join("| ");
console.log("| " + columnValuesString);
}
}
}
The queryBatch
function of LogsQueryClient
returns a LogsQueryBatchResult
object. LogsQueryBatchResult
contains a list of objects with the following possible types:
LogsQueryPartialResult
LogsQuerySuccessfulResult
LogsQueryError
Here's a hierarchy of the response:
LogsQuerySuccessfulResult
|---statistics
|---visualization
|---status ("Success")
|---tables (list of `LogsTable` objects)
|---name
|---rows
|---columnDescriptors (list of `LogsColumn` objects)
|---name
|---type
LogsQueryPartialResult
|---statistics
|---visualization
|---status ("PartialFailure")
|---partialError
|--name
|--code
|--message
|--stack
|---partialTables (list of `LogsTable` objects)
|---name
|---rows
|---columnDescriptors (list of `LogsColumn` objects)
|---name
|---type
LogsQueryError
|--name
|--code
|--message
|--stack
|--status ("Failure")
For example, the following code handles a batch logs query response:
async function processBatchResult(result: LogsQueryBatchResult) {
let i = 0;
for (const response of result) {
console.log(`Results for query with query: ${queriesBatch[i]}`);
if (response.status === LogsQueryResultStatus.Success) {
console.log(
`Printing results from query '${queriesBatch[i].query}' for '${queriesBatch[i].timespan}'`,
);
processTables(response.tables);
} else if (response.status === LogsQueryResultStatus.PartialFailure) {
console.log(
`Printing partial results from query '${queriesBatch[i].query}' for '${queriesBatch[i].timespan}'`,
);
processTables(response.partialTables);
console.log(
` Query had errors:${response.partialError.message} with code ${response.partialError.code}`,
);
} else {
console.log(`Printing errors from query '${queriesBatch[i].query}'`);
console.log(` Query had errors:${response.message} with code ${response.code}`);
}
// next query
i++;
}
}
async function processTables(tablesFromResult: LogsTable[]) {
for (const table of tablesFromResult) {
const columnHeaderString = table.columnDescriptors
.map((column) => `${column.name}(${column.type}) `)
.join("| ");
console.log("| " + columnHeaderString);
for (const row of table.rows) {
const columnValuesString = row.map((columnValue) => `'${columnValue}' `).join("| ");
console.log("| " + columnValuesString);
}
}
}
A full sample can be found here.
Some logs queries take longer than 3 minutes to execute. The default server timeout is 3 minutes. You can increase the server timeout to a maximum of 10 minutes. In the following example, the LogsQueryOptions
object's serverTimeoutInSeconds
property is used to increase the server timeout to 10 minutes:
// setting optional parameters
const queryLogsOptions: LogsQueryOptions = {
// explicitly control the amount of time the server can spend processing the query.
serverTimeoutInSeconds: 600, // 600 seconds = 10 minutes
};
const result = await logsQueryClient.queryWorkspace(
azureLogAnalyticsWorkspaceId,
kustoQuery,
{ duration: Durations.twentyFourHours },
queryLogsOptions,
);
const tablesFromResult = result.tables;
The same logs query can be executed across multiple Log Analytics workspaces. In addition to the Kusto query, the following parameters are required:
workspaceId
- The first (primary) workspace ID.additionalWorkspaces
- A list of workspaces, excluding the workspace provided in the workspaceId
parameter. The parameter's list items can consist of the following identifier formats:
For example, the following query executes in three workspaces:
const queryLogsOptions: LogsQueryOptions = {
additionalWorkspaces: ["<workspace2>", "<workspace3>"],
};
const kustoQuery = "AppEvents | limit 10";
const result = await logsQueryClient.queryWorkspace(
azureLogAnalyticsWorkspaceId,
kustoQuery,
{ duration: Durations.twentyFourHours },
queryLogsOptions,
);
To view the results for each workspace, use the TenantId
column to either order the results or filter them in the Kusto query.
Order results by TenantId
AppEvents | order by TenantId
Filter results by TenantId
AppEvents | filter TenantId == "<workspace2>"
A full sample can be found here.
To get logs query execution statistics, such as CPU and memory consumption:
LogsQueryOptions.includeQueryStatistics
property to true
.statistics
field inside the LogsQueryResult
object.The following example prints the query execution time:
const monitorWorkspaceId = "<workspace_id>";
const logsQueryClient = new LogsQueryClient(new DefaultAzureCredential());
const kustoQuery = "AzureActivity | top 10 by TimeGenerated";
const result = await logsQueryClient.queryWorkspace(
monitorWorkspaceId,
kustoQuery,
{ duration: Durations.oneDay },
{
includeQueryStatistics: true,
},
);
const executionTime =
result.statistics && result.statistics.query && result.statistics.query.executionTime;
console.log(
`Results for query '${kustoQuery}', execution time: ${
executionTime == null ? "unknown" : executionTime
}`,
);
Because the structure of the statistics
payload varies by query, a Record<string, unknown>
return type is used. It contains the raw JSON response. The statistics are found within the query
property of the JSON. For example:
{
"query": {
"executionTime": 0.0156478,
"resourceUsage": {...},
"inputDatasetStatistics": {...},
"datasetStatistics": [{...}]
}
}
To get visualization data for logs queries using the render operator:
LogsQueryOptions.includeVisualization
property to true
.visualization
field inside the LogsQueryResult
object.For example:
const monitorWorkspaceId = "<workspace_id>";
const logsQueryClient = new LogsQueryClient(new DefaultAzureCredential());
const result = await logsQueryClient.queryWorkspace(
monitorWorkspaceId,
`StormEvents
| summarize event_count = count() by State
| where event_count > 10
| project State, event_count
| render columnchart`,
{ duration: Durations.oneDay },
{
includeVisualization: true
}
);
console.log("visualization result:", result.visualization);
Because the structure of the visualization
payload varies by query, a Record<string, unknown>
return type is used. It contains the raw JSON response. For example:
{
"visualization": "columnchart",
"title": "the chart title",
"accumulate": false,
"isQuerySorted": false,
"kind": null,
"legend": null,
"series": null,
"yMin": "NaN",
"yMax": "NaN",
"xAxis": null,
"xColumn": null,
"xTitle": "x axis title",
"yAxis": null,
"yColumns": null,
"ySplit": null,
"yTitle": null,
"anomalyColumns": null
}
The following example gets metrics for an Azure Metrics Advisor subscription.
The resource URI must be that of the resource for which metrics are being queried. It's normally of the format /subscriptions/<id>/resourceGroups/<rg-name>/providers/<source>/topics/<resource-name>
.
To find the resource URI:
id
property.import { DefaultAzureCredential } from "@azure/identity";
import { Durations, Metric, MetricsQueryClient } from "@azure/monitor-query";
import * as dotenv from "dotenv";
dotenv.config();
const metricsResourceId = process.env.METRICS_RESOURCE_ID;
export async function main() {
const tokenCredential = new DefaultAzureCredential();
const metricsQueryClient = new MetricsQueryClient(tokenCredential);
if (!metricsResourceId) {
throw new Error("METRICS_RESOURCE_ID must be set in the environment for this sample");
}
const iterator = metricsQueryClient.listMetricDefinitions(metricsResourceId);
let result = await iterator.next();
let metricNames: string[] = [];
for await (const result of iterator) {
console.log(` metricDefinitions - ${result.id}, ${result.name}`);
if (result.name) {
metricNames.push(result.name);
}
}
const firstMetricName = metricNames[0];
const secondMetricName = metricNames[1];
if (firstMetricName && secondMetricName) {
console.log(`Picking an example metric to query: ${firstMetricName} and ${secondMetricName}`);
const metricsResponse = await metricsQueryClient.queryResource(
metricsResourceId,
[firstMetricName, secondMetricName],
{
granularity: "PT1M",
timespan: { duration: Durations.fiveMinutes },
},
);
console.log(
`Query cost: ${metricsResponse.cost}, interval: ${metricsResponse.granularity}, time span: ${metricsResponse.timespan}`,
);
const metrics: Metric[] = metricsResponse.metrics;
console.log(`Metrics:`, JSON.stringify(metrics, undefined, 2));
const metric = metricsResponse.getMetricByName(firstMetricName);
console.log(`Selected Metric: ${firstMetricName}`, JSON.stringify(metric, undefined, 2));
} else {
console.error(`Metric names are not defined - ${firstMetricName} and ${secondMetricName}`);
}
}
main().catch((err) => {
console.error("The sample encountered an error:", err);
process.exit(1);
});
In the preceding sample, metric results in metricsResponse
are ordered according to the order in which the user specifies the metric names in the metricNames
array argument for the queryResource
function. If the user specifies [firstMetricName, secondMetricName]
, the result for firstMetricName
will appear before the result for secondMetricName
in the metricResponse
.
The metrics queryResource
function returns a QueryMetricsResult
object. The QueryMetricsResult
object contains properties such as a list of Metric
-typed objects, interval
, namespace
, and timespan
. The Metric
objects list can be accessed using the metrics
property. Each Metric
object in this list contains a list of TimeSeriesElement
objects. Each TimeSeriesElement
contains data
and metadataValues
properties. In visual form, the object hierarchy of the response resembles the following structure:
QueryMetricsResult
|---cost
|---timespan (of type `QueryTimeInterval`)
|---granularity
|---namespace
|---resourceRegion
|---metrics (list of `Metric` objects)
|---id
|---type
|---name
|---unit
|---displayDescription
|---errorCode
|---timeseries (list of `TimeSeriesElement` objects)
|---metadataValues
|---data (list of data points represented by `MetricValue` objects)
|---timeStamp
|---average
|---minimum
|---maximum
|---total
|---count
|---getMetricByName(metricName): Metric | undefined (convenience method)
import { DefaultAzureCredential } from "@azure/identity";
import { Durations, Metric, MetricsQueryClient } from "@azure/monitor-query";
import * as dotenv from "dotenv";
dotenv.config();
const metricsResourceId = process.env.METRICS_RESOURCE_ID;
export async function main() {
const tokenCredential = new DefaultAzureCredential();
const metricsQueryClient = new MetricsQueryClient(tokenCredential);
if (!metricsResourceId) {
throw new Error(
"METRICS_RESOURCE_ID for an Azure Metrics Advisor subscription must be set in the environment for this sample",
);
}
console.log(`Picking an example metric to query: MatchedEventCount`);
const metricsResponse = await metricsQueryClient.queryResource(
metricsResourceId,
["MatchedEventCount"],
{
timespan: {
duration: Durations.fiveMinutes,
},
granularity: "PT1M",
aggregations: ["Count"],
},
);
console.log(
`Query cost: ${metricsResponse.cost}, granularity: ${metricsResponse.granularity}, time span: ${metricsResponse.timespan}`,
);
const metrics: Metric[] = metricsResponse.metrics;
for (const metric of metrics) {
console.log(metric.name);
for (const timeseriesElement of metric.timeseries) {
for (const metricValue of timeseriesElement.data!) {
if (metricValue.count !== 0) {
console.log(`There are ${metricValue.count} matched events at ${metricValue.timeStamp}`);
}
}
}
}
}
main().catch((err) => {
console.error("The sample encountered an error:", err);
process.exit(1);
});
A full sample can be found here.
To query metrics for multiple Azure resources in a single request, use the MetricsClient.queryResources
method. This method:
MetricsClient
methods.Each Azure resource must reside in:
Furthermore:
let resourceIds: string[] = [
"/subscriptions/0000000-0000-000-0000-000000/resourceGroups/test/providers/Microsoft.OperationalInsights/workspaces/test-logs",
"/subscriptions/0000000-0000-000-0000-000000/resourceGroups/test/providers/Microsoft.OperationalInsights/workspaces/test-logs2",
];
let metricsNamespace: string = "<YOUR_METRICS_NAMESPACE>";
let metricNames: string[] = ["requests", "count"];
const endpoint: string = "<YOUR_METRICS_ENDPOINT>"; //for example, https://eastus.metrics.monitor.azure.com/
const credential = new DefaultAzureCredential();
const metricsClient: MetricsClient = new MetricsClient(
endpoint,
credential
);
const result: : MetricsQueryResult[] = await metricsClient.queryResources(
resourceIds,
metricNames,
metricsNamespace
);
For an inventory of metrics and dimensions available for each Azure resource type, see Supported metrics with Azure Monitor.
To diagnose various failure scenarios, see the troubleshooting guide.
To learn more about Azure Monitor, see the Azure Monitor service documentation.
If you'd like to contribute to this library, please read the contributing guide to learn more about how to build and test the code.
This module's tests are a mixture of live and unit tests, which require you to have an Azure Monitor instance. To execute the tests, you'll need to run:
rush update
rush build -t @azure/monitor-query
cd into sdk/monitor/monitor-query
sample.env
file to .env
.env
file in an editor and fill in the values.npm run test
.For more details, view our tests folder.
FAQs
An isomorphic client library for querying Azure Monitor's Logs and Metrics data sources.
The npm package @azure/monitor-query receives a total of 12,398 weekly downloads. As such, @azure/monitor-query popularity was classified as popular.
We found that @azure/monitor-query demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 0 open source maintainers collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Research
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
Research
Security News
Attackers used a malicious npm package typosquatting a popular ESLint plugin to steal sensitive data, execute commands, and exploit developer systems.
Security News
The Ultralytics' PyPI Package was compromised four times in one weekend through GitHub Actions cache poisoning and failure to rotate previously compromised API tokens.