A robust, performance-focused and full-featured Redis client for Node.js.
Supports Redis >= 2.6.12 and (Node.js >= 6).
Features
ioredis is a robust, full-featured Redis client that is
used in the world's biggest online commerce company Alibaba and many other awesome companies.
- Full-featured. It supports Cluster, Sentinel, Streams, Pipelining and of course Lua scripting & Pub/Sub (with the support of binary messages).
- High performance.
- Delightful API. It works with Node callbacks and Native promises.
- Transformation of command arguments and replies.
- Transparent key prefixing.
- Abstraction for Lua scripting, allowing you to define custom commands.
- Support for binary data.
- Support for TLS.
- Support for offline queue and ready checking.
- Support for ES6 types, such as
Map
and Set
. - Support for GEO commands (Redis 3.2 Unstable).
- Sophisticated error handling strategy.
- Support for NAT mapping.
Links
[AD] Medis: Redis GUI for OS X
Looking for a Redis GUI manager for OS X, Windows and Linux? Here's Medis!
Medis is an open-sourced, beautiful, easy-to-use Redis GUI management application.
Medis starts with all the basic features you need:
- Keys viewing/editing
- SSH Tunnel for connecting with remote servers
- Terminal for executing custom commands
- JSON/MessagePack format viewing/editing and built-in highlighting/validator
- And other awesome features...
Medis is open sourced on GitHub
[AD] Kuber: Kubernetes Dashboard for iOS
Quick Start
Install
$ npm install ioredis
Basic Usage
const Redis = require("ioredis");
const redis = new Redis();
redis.set("foo", "bar");
redis.get("foo", function (err, result) {
if (err) {
console.error(err);
} else {
console.log(result);
}
});
redis.get("foo").then(function (result) {
console.log(result);
});
redis.zadd("sortedSet", 1, "one", 2, "dos", 4, "quatro", 3, "three");
redis.zrange("sortedSet", 0, 2, "WITHSCORES").then((res) => console.log(res));
redis.set("key", 100, "EX", 10);
See the examples/
folder for more examples.
Connect to Redis
When a new Redis
instance is created,
a connection to Redis will be created at the same time.
You can specify which Redis to connect to by:
new Redis();
new Redis(6380);
new Redis(6379, "192.168.1.1");
new Redis("/tmp/redis.sock");
new Redis({
port: 6379,
host: "127.0.0.1",
family: 4,
password: "auth",
db: 0,
});
You can also specify connection options as a redis://
URL or rediss://
URL when using TLS encryption:
new Redis("redis://:authpassword@127.0.0.1:6380/4");
See API Documentation for all available options.
Pub/Sub
Here is a simple example of the API for publish/subscribe.
The following program opens two client connections.
It subscribes to a channel with one connection
and publishes to that channel with the other:
const Redis = require("ioredis");
const redis = new Redis();
const pub = new Redis();
redis.subscribe("news", "music", (err, count) => {
pub.publish("news", "Hello world!");
pub.publish("music", "Hello again!");
});
redis.on("message", (channel, message) => {
console.log("Receive message %s from channel %s", message, channel);
});
redis.on("messageBuffer", (channel, message) => {
});
PSUBSCRIBE
is also supported in a similar way:
redis.psubscribe("pat?ern", (err, count) => {});
redis.on("pmessage", (pattern, channel, message) => {});
redis.on("pmessageBuffer", (pattern, channel, message) => {});
When a client issues a SUBSCRIBE or PSUBSCRIBE, that connection is put into a "subscriber" mode.
At that point, only commands that modify the subscription set are valid.
When the subscription set is empty, the connection is put back into regular mode.
If you need to send regular commands to Redis while in subscriber mode, just open another connection.
Handle Binary Data
Arguments can be buffers:
redis.set("foo", Buffer.from("bar"));
And every command has a method that returns a Buffer (by adding a suffix of "Buffer" to the command name).
To get a buffer instead of a utf8 string:
redis.getBuffer("foo", (err, result) => {
});
Pipelining
If you want to send a batch of commands (e.g. > 5), you can use pipelining to queue
the commands in memory and then send them to Redis all at once. This way the performance improves by 50%~300% (See benchmark section).
redis.pipeline()
creates a Pipeline
instance. You can call any Redis
commands on it just like the Redis
instance. The commands are queued in memory
and flushed to Redis by calling the exec
method:
const pipeline = redis.pipeline();
pipeline.set("foo", "bar");
pipeline.del("cc");
pipeline.exec((err, results) => {
});
redis
.pipeline()
.set("foo", "bar")
.del("cc")
.exec((err, results) => {});
const promise = redis.pipeline().set("foo", "bar").get("foo").exec();
promise.then((result) => {
});
Each chained command can also have a callback, which will be invoked when the command
gets a reply:
redis
.pipeline()
.set("foo", "bar")
.get("foo", (err, result) => {
})
.exec((err, result) => {
});
In addition to adding commands to the pipeline
queue individually, you can also pass an array of commands and arguments to the constructor:
redis
.pipeline([
["set", "foo", "bar"],
["get", "foo"],
])
.exec(() => {
});
#length
property shows how many commands in the pipeline:
const length = redis.pipeline().set("foo", "bar").get("foo").length;
Transaction
Most of the time, the transaction commands multi
& exec
are used together with pipeline.
Therefore, when multi
is called, a Pipeline
instance is created automatically by default,
so you can use multi
just like pipeline
:
redis
.multi()
.set("foo", "bar")
.get("foo")
.exec((err, results) => {
});
If there's a syntax error in the transaction's command chain (e.g. wrong number of arguments, wrong command name, etc),
then none of the commands would be executed, and an error is returned:
redis
.multi()
.set("foo")
.set("foo", "new value")
.exec((err, results) => {
});
In terms of the interface, multi
differs from pipeline
in that when specifying a callback
to each chained command, the queueing state is passed to the callback instead of the result of the command:
redis
.multi()
.set("foo", "bar", (err, result) => {
})
.exec();
If you want to use transaction without pipeline, pass { pipeline: false }
to multi
,
and every command will be sent to Redis immediately without waiting for an exec
invocation:
redis.multi({ pipeline: false });
redis.set("foo", "bar");
redis.get("foo");
redis.exec((err, result) => {
});
The constructor of multi
also accepts a batch of commands:
redis
.multi([
["set", "foo", "bar"],
["get", "foo"],
])
.exec(() => {
});
Inline transactions are supported by pipeline, which means you can group a subset of commands
in the pipeline into a transaction:
redis
.pipeline()
.get("foo")
.multi()
.set("foo", "bar")
.get("foo")
.exec()
.get("foo")
.exec();
Lua Scripting
ioredis supports all of the scripting commands such as EVAL
, EVALSHA
and SCRIPT
.
However, it's tedious to use in real world scenarios since developers have to take
care of script caching and to detect when to use EVAL
and when to use EVALSHA
.
ioredis exposes a defineCommand
method to make scripting much easier to use:
const redis = new Redis();
redis.defineCommand("echo", {
numberOfKeys: 2,
lua: "return {KEYS[1],KEYS[2],ARGV[1],ARGV[2]}",
});
redis.echo("k1", "k2", "a1", "a2", (err, result) => {
});
redis.echoBuffer("k1", "k2", "a1", "a2", (err, result) => {
});
redis.pipeline().set("foo", "bar").echo("k1", "k2", "a1", "a2").exec();
If the number of keys can't be determined when defining a command, you can
omit the numberOfKeys
property and pass the number of keys as the first argument
when you call the command:
redis.defineCommand("echoDynamicKeyNumber", {
lua: "return {KEYS[1],KEYS[2],ARGV[1],ARGV[2]}",
});
redis.echoDynamicKeyNumber(2, "k1", "k2", "a1", "a2", (err, result) => {
});
Transparent Key Prefixing
This feature allows you to specify a string that will automatically be prepended
to all the keys in a command, which makes it easier to manage your key
namespaces.
Warning This feature won't apply to commands like KEYS and SCAN that take patterns rather than actual keys(#239),
and this feature also won't apply to the replies of commands even they are key names (#325).
const fooRedis = new Redis({ keyPrefix: "foo:" });
fooRedis.set("bar", "baz");
fooRedis.defineCommand("echo", {
numberOfKeys: 2,
lua: "return {KEYS[1],KEYS[2],ARGV[1],ARGV[2]}",
});
fooRedis
.pipeline()
.sort("list", "BY", "weight_*->fieldname")
.echo("k1", "k2", "a1", "a2")
.exec();
Transforming Arguments & Replies
Most Redis commands take one or more Strings as arguments,
and replies are sent back as a single String or an Array of Strings. However, sometimes
you may want something different. For instance, it would be more convenient if the HGETALL
command returns a hash (e.g. { key: val1, key2: v2 }
) rather than an array of key values (e.g. [key1, val1, key2, val2]
).
ioredis has a flexible system for transforming arguments and replies. There are two types
of transformers, argument transformer and reply transformer:
const Redis = require("ioredis");
Redis.Command.setArgumentTransformer("hmset", (args) => {
if (args.length === 2) {
if (typeof Map !== "undefined" && args[1] instanceof Map) {
return [args[0]].concat(utils.convertMapToArray(args[1]));
}
if (typeof args[1] === "object" && args[1] !== null) {
return [args[0]].concat(utils.convertObjectToArray(args[1]));
}
}
return args;
});
Redis.Command.setReplyTransformer("hgetall", (result) => {
if (Array.isArray(result)) {
const obj = {};
for (let i = 0; i < result.length; i += 2) {
obj[result[i]] = result[i + 1];
}
return obj;
}
return result;
});
There are three built-in transformers, two argument transformers for hmset
& mset
and
a reply transformer for hgetall
. Transformers for hmset
and hgetall
were mentioned
above, and the transformer for mset
is similar to the one for hmset
:
redis.mset({ k1: "v1", k2: "v2" });
redis.get("k1", (err, result) => {
});
redis.mset(
new Map([
["k3", "v3"],
["k4", "v4"],
])
);
redis.get("k3", (err, result) => {
});
Another useful example of a reply transformer is one that changes hgetall
to return array of arrays instead of objects which avoids a unwanted conversation of hash keys to strings when dealing with binary hash keys:
Redis.Command.setReplyTransformer("hgetall", (result) => {
const arr = [];
for (let i = 0; i < result.length; i += 2) {
arr.push([result[i], result[i + 1]]);
}
return arr;
});
redis.hset("h1", Buffer.from([0x01]), Buffer.from([0x02]));
redis.hset("h1", Buffer.from([0x03]), Buffer.from([0x04]));
redis.hgetallBuffer("h1", (err, result) => {
});
Monitor
Redis supports the MONITOR command,
which lets you see all commands received by the Redis server across all client connections,
including from other client libraries and other computers.
The monitor
method returns a monitor instance.
After you send the MONITOR command, no other commands are valid on that connection. ioredis will emit a monitor event for every new monitor message that comes across.
The callback for the monitor event takes a timestamp from the Redis server and an array of command arguments.
Here is a simple example:
redis.monitor((err, monitor) => {
monitor.on("monitor", (time, args, source, database) => {});
});
Here is another example illustrating an async
function and monitor.disconnect()
:
async () => {
const monitor = await redis.monitor();
monitor.on("monitor", console.log);
monitor.disconnect();
};
Streamify Scanning
Redis 2.8 added the SCAN
command to incrementally iterate through the keys in the database. It's different from KEYS
in that
SCAN
only returns a small number of elements each call, so it can be used in production without the downside
of blocking the server for a long time. However, it requires recording the cursor on the client side each time
the SCAN
command is called in order to iterate through all the keys correctly. Since it's a relatively common use case, ioredis
provides a streaming interface for the SCAN
command to make things much easier. A readable stream can be created by calling scanStream
:
const redis = new Redis();
const stream = redis.scanStream();
stream.on("data", (resultKeys) => {
for (let i = 0; i < resultKeys.length; i++) {
console.log(resultKeys[i]);
}
});
stream.on("end", () => {
console.log("all keys have been visited");
});
scanStream
accepts an option, with which you can specify the MATCH
pattern and the COUNT
argument:
const stream = redis.scanStream({
match: "user:*",
count: 100,
});
Just like other commands, scanStream
has a binary version scanBufferStream
, which returns an array of buffers. It's useful when
the key names are not utf8 strings.
There are also hscanStream
, zscanStream
and sscanStream
to iterate through elements in a hash, zset and set. The interface of each is
similar to scanStream
except the first argument is the key name:
const stream = redis.hscanStream("myhash", {
match: "age:??",
});
You can learn more from the Redis documentation.
Useful Tips
It's pretty common that doing an async task in the data
handler. We'd like the scanning process to be paused until the async task to be finished. Stream#pause()
and Stream.resume()
do the trick. For example if we want to migrate data in Redis to MySQL:
const stream = redis.scanStream();
stream.on("data", (resultKeys) => {
stream.pause();
Promise.all(resultKeys.map(migrateKeyToMySQL)).then(() => {
stream.resume();
});
});
stream.on("end", () => {
console.log("done migration");
});
Auto-reconnect
By default, ioredis will try to reconnect when the connection to Redis is lost
except when the connection is closed manually by redis.disconnect()
or redis.quit()
.
It's very flexible to control how long to wait to reconnect after disconnection
using the retryStrategy
option:
const redis = new Redis({
retryStrategy(times) {
const delay = Math.min(times * 50, 2000);
return delay;
},
});
retryStrategy
is a function that will be called when the connection is lost.
The argument times
means this is the nth reconnection being made and
the return value represents how long (in ms) to wait to reconnect. When the
return value isn't a number, ioredis will stop trying to reconnect, and the connection
will be lost forever if the user doesn't call redis.connect()
manually.
When reconnected, the client will auto subscribe to channels that the previous connection subscribed to.
This behavior can be disabled by setting the autoResubscribe
option to false
.
And if the previous connection has some unfulfilled commands (most likely blocking commands such as brpop
and blpop
),
the client will resend them when reconnected. This behavior can be disabled by setting the autoResendUnfulfilledCommands
option to false
.
By default, all pending commands will be flushed with an error every 20 retry attempts. That makes sure commands won't wait forever when the connection is down. You can change this behavior by setting maxRetriesPerRequest
:
const redis = new Redis({
maxRetriesPerRequest: 1,
});
Set maxRetriesPerRequest to null
to disable this behavior, and every command will wait forever until the connection is alive again (which is the default behavior before ioredis v4).
Reconnect on error
Besides auto-reconnect when the connection is closed, ioredis supports reconnecting on the specified errors by the reconnectOnError
option. Here's an example that will reconnect when receiving READONLY
error:
const redis = new Redis({
reconnectOnError(err) {
const targetError = "READONLY";
if (err.message.includes(targetError)) {
return true;
}
},
});
This feature is useful when using Amazon ElastiCache. Once failover happens, Amazon ElastiCache will switch the master we currently connected with to a slave, leading to the following writes fails with the error READONLY
. Using reconnectOnError
, we can force the connection to reconnect on this error in order to connect to the new master.
Furthermore, if the reconnectOnError
returns 2
, ioredis will resend the failed command after reconnecting.
Connection Events
The Redis instance will emit some events about the state of the connection to the Redis server.
Event | Description |
---|
connect | emits when a connection is established to the Redis server. |
ready | If enableReadyCheck is true , client will emit ready when the server reports that it is ready to receive commands (e.g. finish loading data from disk). Otherwise, ready will be emitted immediately right after the connect event. |
error | emits when an error occurs while connecting. However, ioredis emits all error events silently (only emits when there's at least one listener) so that your application won't crash if you're not listening to the error event. |
close | emits when an established Redis server connection has closed. |
reconnecting | emits after close when a reconnection will be made. The argument of the event is the time (in ms) before reconnecting. |
end | emits after close when no more reconnections will be made, or the connection is failed to establish. |
You can also check out the Redis#status
property to get the current connection status.
Besides the above connection events, there are several other custom events:
Event | Description |
---|
select | emits when the database changed. The argument is the new db number. |
Offline Queue
When a command can't be processed by Redis (being sent before the ready
event), by default, it's added to the offline queue and will be
executed when it can be processed. You can disable this feature by setting the enableOfflineQueue
option to false
:
const redis = new Redis({ enableOfflineQueue: false });
TLS Options
Redis doesn't support TLS natively, however if the redis server you want to connect to is hosted behind a TLS proxy (e.g. stunnel) or is offered by a PaaS service that supports TLS connection (e.g. Redis Labs), you can set the tls
option:
const redis = new Redis({
host: "localhost",
tls: {
ca: fs.readFileSync("cert.pem"),
},
});
Alternatively, specify the connection through a rediss://
URL.
const redis = new Redis("rediss://redis.my-service.com");
Sentinel
ioredis supports Sentinel out of the box. It works transparently as all features that work when
you connect to a single node also work when you connect to a sentinel group. Make sure to run Redis >= 2.8.12 if you want to use this feature. Sentinels have a default port of 26379.
To connect using Sentinel, use:
const redis = new Redis({
sentinels: [
{ host: "localhost", port: 26379 },
{ host: "localhost", port: 26380 },
],
name: "mymaster",
});
redis.set("foo", "bar");
The arguments passed to the constructor are different from the ones you use to connect to a single node, where:
name
identifies a group of Redis instances composed of a master and one or more slaves (mymaster
in the example);sentinelPassword
(optional) password for Sentinel instances.sentinels
are a list of sentinels to connect to. The list does not need to enumerate all your sentinel instances, but a few so that if one is down the client will try the next one.role
(optional) with a value of slave
will return a random slave from the Sentinel group.preferredSlaves
(optional) can be used to prefer a particular slave or set of slaves based on priority. It accepts a function or array.
ioredis guarantees that the node you connected to is always a master even after a failover. When a failover happens, instead of trying to reconnect to the failed node (which will be demoted to slave when it's available again), ioredis will ask sentinels for the new master node and connect to it. All commands sent during the failover are queued and will be executed when the new connection is established so that none of the commands will be lost.
It's possible to connect to a slave instead of a master by specifying the option role
with the value of slave
and ioredis will try to connect to a random slave of the specified master, with the guarantee that the connected node is always a slave. If the current node is promoted to master due to a failover, ioredis will disconnect from it and ask the sentinels for another slave node to connect to.
If you specify the option preferredSlaves
along with role: 'slave'
ioredis will attempt to use this value when selecting the slave from the pool of available slaves. The value of preferredSlaves
should either be a function that accepts an array of available slaves and returns a single result, or an array of slave values priorities by the lowest prio
value first with a default value of 1
.
const availableSlaves = [{ ip: "127.0.0.1", port: "31231", flags: "slave" }];
let preferredSlaves = [
{ ip: "127.0.0.1", port: "31231", prio: 1 },
{ ip: "127.0.0.1", port: "31232", prio: 2 },
];
preferredSlaves = function (availableSlaves) {
for (let i = 0; i < availableSlaves.length; i++) {
const slave = availableSlaves[i];
if (slave.ip === "127.0.0.1") {
if (slave.port === "31234") {
return slave;
}
}
}
return false;
};
const redis = new Redis({
sentinels: [
{ host: "127.0.0.1", port: 26379 },
{ host: "127.0.0.1", port: 26380 },
],
name: "mymaster",
role: "slave",
preferredSlaves: preferredSlaves,
});
Besides the retryStrategy
option, there's also a sentinelRetryStrategy
in Sentinel mode which will be invoked when all the sentinel nodes are unreachable during connecting. If sentinelRetryStrategy
returns a valid delay time, ioredis will try to reconnect from scratch. The default value of sentinelRetryStrategy
is:
function (times) {
const delay = Math.min(times * 10, 1000);
return delay;
}
Cluster
Redis Cluster provides a way to run a Redis installation where data is automatically sharded across multiple Redis nodes.
You can connect to a Redis Cluster like this:
const Redis = require("ioredis");
const cluster = new Redis.Cluster([
{
port: 6380,
host: "127.0.0.1",
},
{
port: 6381,
host: "127.0.0.1",
},
]);
cluster.set("foo", "bar");
cluster.get("foo", (err, res) => {
});
Cluster
constructor accepts two arguments, where:
-
The first argument is a list of nodes of the cluster you want to connect to.
Just like Sentinel, the list does not need to enumerate all your cluster nodes,
but a few so that if one is unreachable the client will try the next one, and the client will discover other nodes automatically when at least one node is connected.
-
The second argument is the options, where:
-
clusterRetryStrategy
: When none of the startup nodes are reachable, clusterRetryStrategy
will be invoked. When a number is returned,
ioredis will try to reconnect to the startup nodes from scratch after the specified delay (in ms). Otherwise, an error of "None of startup nodes is available" will be returned.
The default value of this option is:
function (times) {
const delay = Math.min(100 + times * 2, 2000);
return delay;
}
It's possible to modify the startupNodes
property in order to switch to another set of nodes here:
function (times) {
this.startupNodes = [{ port: 6790, host: '127.0.0.1' }];
return Math.min(100 + times * 2, 2000);
}
-
dnsLookup
: Alternative DNS lookup function (dns.lookup()
is used by default). It may be useful to override this in special cases, such as when AWS ElastiCache used with TLS enabled.
-
enableOfflineQueue
: Similar to the enableOfflineQueue
option of Redis
class.
-
enableReadyCheck
: When enabled, "ready" event will only be emitted when CLUSTER INFO
command
reporting the cluster is ready for handling commands. Otherwise, it will be emitted immediately after "connect" is emitted.
-
scaleReads
: Config where to send the read queries. See below for more details.
-
maxRedirections
: When a cluster related error (e.g. MOVED
, ASK
and CLUSTERDOWN
etc.) is received, the client will redirect the
command to another node. This option limits the max redirections allowed when sending a command. The default value is 16
.
-
retryDelayOnFailover
: If the target node is disconnected when sending a command,
ioredis will retry after the specified delay. The default value is 100
. You should make sure retryDelayOnFailover * maxRedirections > cluster-node-timeout
to insure that no command will fail during a failover.
-
retryDelayOnClusterDown
: When a cluster is down, all commands will be rejected with the error of CLUSTERDOWN
. If this option is a number (by default, it is 100
), the client
will resend the commands after the specified time (in ms).
-
retryDelayOnTryAgain
: If this option is a number (by default, it is 100
), the client
will resend the commands rejected with TRYAGAIN
error after the specified time (in ms).
-
redisOptions
: Default options passed to the constructor of Redis
when connecting to a node.
-
slotsRefreshTimeout
: Milliseconds before a timeout occurs while refreshing slots from the cluster (default 1000
)
-
slotsRefreshInterval
: Milliseconds between every automatic slots refresh (default 5000
)
Read-write splitting
A typical redis cluster contains three or more masters and several slaves for each master. It's possible to scale out redis cluster by sending read queries to slaves and write queries to masters by setting the scaleReads
option.
scaleReads
is "master" by default, which means ioredis will never send any queries to slaves. There are other three available options:
- "all": Send write queries to masters and read queries to masters or slaves randomly.
- "slave": Send write queries to masters and read queries to slaves.
- a custom
function(nodes, command): node
: Will choose the custom function to select to which node to send read queries (write queries keep being sent to master). The first node in nodes
is always the master serving the relevant slots. If the function returns an array of nodes, a random node of that list will be selected.
For example:
const cluster = new Redis.Cluster(
[
],
{
scaleReads: "slave",
}
);
cluster.set("foo", "bar");
cluster.get("foo", (err, res) => {
});
NB In the code snippet above, the res
may not be equal to "bar" because of the lag of replication between the master and slaves.
Running commands to multiple nodes
Every command will be sent to exactly one node. For commands containing keys, (e.g. GET
, SET
and HGETALL
), ioredis sends them to the node that serving the keys, and for other commands not containing keys, (e.g. INFO
, KEYS
and FLUSHDB
), ioredis sends them to a random node.
Sometimes you may want to send a command to multiple nodes (masters or slaves) of the cluster, you can get the nodes via Cluster#nodes()
method.
Cluster#nodes()
accepts a parameter role, which can be "master", "slave" and "all" (default), and returns an array of Redis
instance. For example:
const slaves = cluster.nodes("slave");
Promise.all(slaves.map(node => node.flushdb()))
const masters = cluster.nodes("master");
Promise.all(masters.map(node => node.keys()).then(keys => {
});
NAT Mapping
Sometimes the cluster is hosted within a internal network that can only be accessed via a NAT (Network Address Translation) instance. See Accessing ElastiCache from outside AWS as an example.
You can specify nat mapping rules via natMap
option:
const cluster = new Redis.Cluster(
[
{
host: "203.0.113.73",
port: 30001,
},
],
{
natMap: {
"10.0.1.230:30001": { host: "203.0.113.73", port: 30001 },
"10.0.1.231:30001": { host: "203.0.113.73", port: 30002 },
"10.0.1.232:30001": { host: "203.0.113.73", port: 30003 },
},
}
);
This option is also useful when the cluster is running inside a Docker container.
Transaction and pipeline in Cluster mode
Almost all features that are supported by Redis
are also supported by Redis.Cluster
, e.g. custom commands, transaction and pipeline.
However there are some differences when using transaction and pipeline in Cluster mode:
- All keys in a pipeline should belong to the same slot since ioredis sends all commands in a pipeline to the same node.
- You can't use
multi
without pipeline (aka cluster.multi({ pipeline: false })
). This is because when you call cluster.multi({ pipeline: false })
, ioredis doesn't know which node the multi
command should be sent to. - Chaining custom commands in the pipeline is not supported in Cluster mode.
When any commands in a pipeline receives a MOVED
or ASK
error, ioredis will resend the whole pipeline to the specified node automatically if all of the following conditions are satisfied:
- All errors received in the pipeline are the same. For example, we won't resend the pipeline if we got two
MOVED
errors pointing to different nodes. - All commands executed successfully are readonly commands. This makes sure that resending the pipeline won't have side effects.
Pub/Sub
Pub/Sub in cluster mode works exactly as the same as in standalone mode. Internally, when a node of the cluster receives a message, it will broadcast the message to the other nodes. ioredis makes sure that each message will only be received once by strictly subscribing one node at the same time.
const nodes = [
];
const pub = new Redis.Cluster(nodes);
const sub = new Redis.Cluster(nodes);
sub.on("message", (channel, message) => {
console.log(channel, message);
});
sub.subscribe("news", () => {
pub.publish("news", "highlights");
});
Events
Event | Description |
---|
connect | emits when a connection is established to the Redis server. |
ready | emits when CLUSTER INFO reporting the cluster is able to receive commands (if enableReadyCheck is true ) or immediately after connect event (if enableReadyCheck is false). |
error | emits when an error occurs while connecting with a property of lastNodeError representing the last node error received. This event is emitted silently (only emitting if there's at least one listener). |
close | emits when an established Redis server connection has closed. |
reconnecting | emits after close when a reconnection will be made. The argument of the event is the time (in ms) before reconnecting. |
end | emits after close when no more reconnections will be made. |
+node | emits when a new node is connected. |
-node | emits when a node is disconnected. |
node error | emits when an error occurs when connecting to a node. The second argument indicates the address of the node. |
Password
Setting the password
option to access password-protected clusters:
const Redis = require("ioredis");
const cluster = new Redis.Cluster(nodes, {
redisOptions: {
password: "your-cluster-password",
},
});
If some of nodes in the cluster using a different password, you should specify them in the first parameter:
const Redis = require("ioredis");
const cluster = new Redis.Cluster(
[
{ port: 30001, password: "password-for-30001" },
{ port: 30002, password: null },
],
{
redisOptions: {
password: "fallback-password",
},
}
);
Special note: AWS ElastiCache Clusters with TLS
AWS ElastiCache for Redis (Clustered Mode) supports TLS encryption. If you use
this, you may encounter errors with invalid certificates. To resolve this
issue, construct the Cluster
with the dnsLookup
option as follows:
const cluster = new Redis.Cluster(
[
{
host: "clustercfg.myCluster.abcdefg.xyz.cache.amazonaws.com",
port: 6379,
},
],
{
dnsLookup: (address, callback) => callback(null, address),
redisOptions: {
tls: {},
},
}
);
Error Handling
All the errors returned by the Redis server are instances of ReplyError
, which can be accessed via Redis
:
const Redis = require("ioredis");
const redis = new Redis();
redis.set("foo", (err) => {
err instanceof Redis.ReplyError;
});
This is the error stack of the ReplyError
:
ReplyError: ERR wrong number of arguments for 'set' command
at ReplyParser._parseResult (/app/node_modules/ioredis/lib/parsers/javascript.js:60:14)
at ReplyParser.execute (/app/node_modules/ioredis/lib/parsers/javascript.js:178:20)
at Socket.<anonymous> (/app/node_modules/ioredis/lib/redis/event_handler.js:99:22)
at Socket.emit (events.js:97:17)
at readableAddChunk (_stream_readable.js:143:16)
at Socket.Readable.push (_stream_readable.js:106:10)
at TCP.onread (net.js:509:20)
By default, the error stack doesn't make any sense because the whole stack happens in the ioredis
module itself, not in your code. So it's not easy to find out where the error happens in your code.
ioredis provides an option showFriendlyErrorStack
to solve the problem. When you enable
showFriendlyErrorStack
, ioredis will optimize the error stack for you:
const Redis = require("ioredis");
const redis = new Redis({ showFriendlyErrorStack: true });
redis.set("foo");
And the output will be:
ReplyError: ERR wrong number of arguments for 'set' command
at Object.<anonymous> (/app/index.js:3:7)
at Module._compile (module.js:446:26)
at Object.Module._extensions..js (module.js:464:10)
at Module.load (module.js:341:32)
at Function.Module._load (module.js:296:12)
at Function.Module.runMain (module.js:487:10)
at startup (node.js:111:16)
at node.js:799:3
This time the stack tells you that the error happens on the third line in your code. Pretty sweet!
However, it would decrease the performance significantly to optimize the error stack. So by
default, this option is disabled and can only be used for debugging purposes. You shouldn't use this feature in a production environment.
Plugging in your own Promises Library
If you're an advanced user, you may want to plug in your own promise library like bluebird. Just set Redis.Promise to your favorite ES6-style promise constructor and ioredis will use it.
const Redis = require("ioredis");
Redis.Promise = require("bluebird");
const redis = new Redis();
assert.equal(redis.get().constructor, require("bluebird"));
Redis.Promise = global.Promise;
assert.equal(redis.get().constructor, global.Promise);
Running tests
Start a Redis server on 127.0.0.1:6379, and then:
$ npm test
FLUSH ALL
will be invoked after each test, so make sure there's no valuable data in it before running tests.
If your testing environment does not let you spin up a Redis server ioredis-mock is a drop-in replacement you can use in your tests. It aims to behave identically to ioredis connected to a Redis server so that your integration tests is easier to write and of better quality.
Debug
You can set the DEBUG
env to ioredis:*
to print debug info:
$ DEBUG=ioredis:* node app.js
Join in!
I'm happy to receive bug reports, fixes, documentation enhancements, and any other improvements.
And since I'm not a native English speaker, if you find any grammar mistakes in the documentation, please also let me know. :)
Open source is hard and time-consuming. If you want to invest in ioredis's future you can become a sponsor and make us spend more time on this library's improvements and new features.
Thank you for using ioredis :-)
Contributors
This project exists thanks to all the people who contribute:
License
MIT