Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

heap-typed

Package Overview
Dependencies
Maintainers
0
Versions
166
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

heap-typed

Heap. Javascript & Typescript Data Structure.

  • 1.53.7
  • latest
  • Source
  • npm
  • Socket score

Version published
Maintainers
0
Created
Source

NPM GitHub top language npm eslint npm bundle size npm bundle size npm

What

Brief

This is a standalone Heap data structure from the data-structure-typed collection. If you wish to access more data structures or advanced features, you can transition to directly installing the complete data-structure-typed package

How

install

npm

npm i heap-typed --save

yarn

yarn add heap-typed

snippet

Use Heap to sort an array

    function heapSort(arr: number[]): number[] {
      const heap = new Heap<number>(arr, { comparator: (a, b) => a - b });
      const sorted: number[] = [];
      while (!heap.isEmpty()) {
        sorted.push(heap.poll()!); // Poll minimum element
      }
      return sorted;
    }

    const array = [5, 3, 8, 4, 1, 2];
    console.log(heapSort(array)); // [1, 2, 3, 4, 5, 8]

Use Heap to solve top k problems

    function topKElements(arr: number[], k: number): number[] {
      const heap = new Heap<number>([], { comparator: (a, b) => b - a }); // Max heap
      arr.forEach(num => {
        heap.add(num);
        if (heap.size > k) heap.poll(); // Keep the heap size at K
      });
      return heap.toArray();
    }

    const numbers = [10, 30, 20, 5, 15, 25];
    console.log(topKElements(numbers, 3)); // [15, 10, 5]

Use Heap to merge sorted sequences

    function mergeSortedSequences(sequences: number[][]): number[] {
      const heap = new Heap<{ value: number; seqIndex: number; itemIndex: number }>([], {
        comparator: (a, b) => a.value - b.value // Min heap
      });

      // Initialize heap
      sequences.forEach((seq, seqIndex) => {
        if (seq.length) {
          heap.add({ value: seq[0], seqIndex, itemIndex: 0 });
        }
      });

      const merged: number[] = [];
      while (!heap.isEmpty()) {
        const { value, seqIndex, itemIndex } = heap.poll()!;
        merged.push(value);

        if (itemIndex + 1 < sequences[seqIndex].length) {
          heap.add({
            value: sequences[seqIndex][itemIndex + 1],
            seqIndex,
            itemIndex: itemIndex + 1
          });
        }
      }

      return merged;
    }

    const sequences = [
      [1, 4, 7],
      [2, 5, 8],
      [3, 6, 9]
    ];
    console.log(mergeSortedSequences(sequences)); // [1, 2, 3, 4, 5, 6, 7, 8, 9]

Use Heap to dynamically maintain the median

    class MedianFinder {
      private low: MaxHeap<number>; // Max heap, stores the smaller half
      private high: MinHeap<number>; // Min heap, stores the larger half

      constructor() {
        this.low = new MaxHeap<number>([]);
        this.high = new MinHeap<number>([]);
      }

      addNum(num: number): void {
        if (this.low.isEmpty() || num <= this.low.peek()!) this.low.add(num);
        else this.high.add(num);

        // Balance heaps
        if (this.low.size > this.high.size + 1) this.high.add(this.low.poll()!);
        else if (this.high.size > this.low.size) this.low.add(this.high.poll()!);
      }

      findMedian(): number {
        if (this.low.size === this.high.size) return (this.low.peek()! + this.high.peek()!) / 2;
        return this.low.peek()!;
      }
    }

    const medianFinder = new MedianFinder();
    medianFinder.addNum(10);
    console.log(medianFinder.findMedian()); // 10
    medianFinder.addNum(20);
    console.log(medianFinder.findMedian()); // 15
    medianFinder.addNum(30);
    console.log(medianFinder.findMedian()); // 20
    medianFinder.addNum(40);
    console.log(medianFinder.findMedian()); // 25
    medianFinder.addNum(50);
    console.log(medianFinder.findMedian()); // 30

Use Heap for load balancing

    function loadBalance(requests: number[], servers: number): number[] {
      const serverHeap = new Heap<{ id: number; load: number }>([], { comparator: (a, b) => a.load - b.load }); // min heap
      const serverLoads = new Array(servers).fill(0);

      for (let i = 0; i < servers; i++) {
        serverHeap.add({ id: i, load: 0 });
      }

      requests.forEach(req => {
        const server = serverHeap.poll()!;
        serverLoads[server.id] += req;
        server.load += req;
        serverHeap.add(server); // The server after updating the load is re-entered into the heap
      });

      return serverLoads;
    }

    const requests = [5, 2, 8, 3, 7];
    console.log(loadBalance(requests, 3)); // [12, 8, 5]

Use Heap to schedule tasks

    type Task = [string, number];

    function scheduleTasks(tasks: Task[], machines: number): Map<number, Task[]> {
      const machineHeap = new Heap<{ id: number; load: number }>([], { comparator: (a, b) => a.load - b.load }); // Min heap
      const allocation = new Map<number, Task[]>();

      // Initialize the load on each machine
      for (let i = 0; i < machines; i++) {
        machineHeap.add({ id: i, load: 0 });
        allocation.set(i, []);
      }

      // Assign tasks
      tasks.forEach(([task, load]) => {
        const machine = machineHeap.poll()!;
        allocation.get(machine.id)!.push([task, load]);
        machine.load += load;
        machineHeap.add(machine); // The machine after updating the load is re-entered into the heap
      });

      return allocation;
    }

    const tasks: Task[] = [
      ['Task1', 3],
      ['Task2', 1],
      ['Task3', 2],
      ['Task4', 5],
      ['Task5', 4]
    ];
    const expectedMap = new Map<number, Task[]>();
    expectedMap.set(0, [
      ['Task1', 3],
      ['Task4', 5]
    ]);
    expectedMap.set(1, [
      ['Task2', 1],
      ['Task3', 2],
      ['Task5', 4]
    ]);
    console.log(scheduleTasks(tasks, 2)); // expectedMap

API docs & Examples

API Docs

Live Examples

Examples Repository

Data Structures

Data StructureUnit TestPerformance TestAPI Docs
HeapHeap

Standard library data structure comparison

Data Structure TypedC++ STLjava.utilPython collections
Heap<E>priority_queue<T>PriorityQueue<E>heapq

Benchmark

heap
test nametime taken (ms)executions per secsample deviation
10,000 add & pop5.80172.358.78e-5
10,000 fib add & pop357.922.790.00

Built-in classic algorithms

AlgorithmFunction DescriptionIteration Type

Software Engineering Design Standards

PrincipleDescription
PracticalityFollows ES6 and ESNext standards, offering unified and considerate optional parameters, and simplifies method names.
ExtensibilityAdheres to OOP (Object-Oriented Programming) principles, allowing inheritance for all data structures.
ModularizationIncludes data structure modularization and independent NPM packages.
EfficiencyAll methods provide time and space complexity, comparable to native JS performance.
MaintainabilityFollows open-source community development standards, complete documentation, continuous integration, and adheres to TDD (Test-Driven Development) patterns.
TestabilityAutomated and customized unit testing, performance testing, and integration testing.
PortabilityPlans for porting to Java, Python, and C++, currently achieved to 80%.
ReusabilityFully decoupled, minimized side effects, and adheres to OOP.
SecurityCarefully designed security for member variables and methods. Read-write separation. Data structure software does not need to consider other security aspects.
ScalabilityData structure software does not involve load issues.

Keywords

FAQs

Package last updated on 22 Nov 2024

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc