Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

nodejs-polars

Package Overview
Dependencies
Maintainers
2
Versions
45
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

nodejs-polars - npm Package Compare versions

Comparing version 0.8.0 to 0.8.1

11

bin/dataframe.d.ts

@@ -929,4 +929,4 @@ /// <reference types="node" />

nullCount(): DataFrame;
partitionBy(cols: string | string[], stable?: boolean): DataFrame[];
partitionBy<T>(cols: string | string[], stable: boolean, mapFn: (df: DataFrame) => T): T[];
partitionBy(cols: string | string[], stable?: boolean, includeKey?: boolean): DataFrame[];
partitionBy<T>(cols: string | string[], stable: boolean, includeKey: boolean, mapFn: (df: DataFrame) => T): T[];
/**

@@ -1242,6 +1242,7 @@ *

*/
sort(by: ColumnsOrExpr, reverse?: boolean): DataFrame;
sort({ by, reverse }: {
sort(by: ColumnsOrExpr, descending?: boolean, maintain_order?: boolean): DataFrame;
sort({ by, descending, maintain_order, }: {
by: ColumnsOrExpr;
reverse?: boolean;
descending?: boolean;
maintain_order?: boolean;
}): DataFrame;

@@ -1248,0 +1249,0 @@ /**

@@ -181,3 +181,3 @@ "use strict";

groupByRolling(opts) {
return (0, groupby_1.RollingGroupBy)((0, exports._DataFrame)(_df), opts.indexColumn, opts.period, opts.offset, opts.closed, opts.by);
return (0, groupby_1.RollingGroupBy)((0, exports._DataFrame)(_df), opts.indexColumn, opts.period, opts.offset, opts.closed, opts.by, opts.check_sorted);
},

@@ -273,5 +273,7 @@ groupByDynamic({ indexColumn, every, period, offset, truncate, includeBoundaries, closed, by, }) {

},
partitionBy(by, strict = false, mapFn = (df) => df) {
partitionBy(by, strict = false, includeKey, mapFn = (df) => df) {
by = Array.isArray(by) ? by : [by];
return _df.partitionBy(by, strict).map((d) => mapFn((0, exports._DataFrame)(d)));
return _df
.partitionBy(by, strict, includeKey)
.map((d) => mapFn((0, exports._DataFrame)(d)));
},

@@ -380,5 +382,5 @@ pivot(values, options) {

},
sort(arg, reverse = false) {
sort(arg, descending = false, maintain_order = false) {
if (arg?.by !== undefined) {
return this.sort(arg.by, arg.reverse);
return this.sort(arg.by, arg.descending);
}

@@ -388,6 +390,6 @@ if (Array.isArray(arg) || expr_1.Expr.isExpr(arg)) {

.lazy()
.sort(arg, reverse)
.sort(arg, descending, maintain_order)
.collectSync({ noOptimization: true, stringCache: false });
}
return wrap("sort", arg, reverse, true, false);
return wrap("sort", arg, descending, maintain_order, true, false);
},

@@ -515,19 +517,28 @@ std() {

transpose(options) {
const df = wrap("transpose", options?.includeHeader ?? false, options?.headerName ?? "");
const includeHeader = options?.includeHeader ?? false;
const headeName = options?.headerName ?? "column";
const keep_names_as = includeHeader ? headeName : undefined;
if (options?.columnNames) {
function* namesIter() {
if (options?.includeHeader) {
yield options.headerName;
function takeNItems(iterable, n) {
const result = [];
let i = 0;
for (const item of iterable) {
if (i >= n) {
break;
}
result.push(item);
i++;
}
const gen = options.columnNames[Symbol.iterator]();
let next;
// rome-ignore lint: no-cond-assign
while ((next = gen.next())) {
yield next.value;
}
return result;
}
const newColumns = Array.from({ length: df.width }, ((i) => () => i.next().value)(namesIter()));
df.columns = newColumns;
options.columnNames = Array.isArray(options.columnNames)
? options.columnNames.slice(this.height)
: takeNItems(options.columnNames, this.height);
}
return df;
if (!options?.columnNames) {
return wrap("transpose", keep_names_as, undefined);
}
else {
return wrap("transpose", keep_names_as, options.columnNames);
}
},

@@ -534,0 +545,0 @@ unnest(names) {

@@ -164,3 +164,3 @@ import { DataFrame } from "./dataframe";

/** @ignore */
export declare function RollingGroupBy(df: any, indexColumn: string, period: string, offset?: string, closed?: any, by?: ColumnsOrExpr): RollingGroupBy;
export declare function RollingGroupBy(df: any, indexColumn: ColumnsOrExpr, period: string, offset?: string, closed?: any, by?: ColumnsOrExpr, check_sorted?: boolean): RollingGroupBy;
/**

@@ -167,0 +167,0 @@ * intermediate state of a dynamic groupby

@@ -111,3 +111,3 @@ "use strict";

/** @ignore */
function RollingGroupBy(df, indexColumn, period, offset, closed, by) {
function RollingGroupBy(df, indexColumn, period, offset, closed, by, check_sorted) {
return {

@@ -117,3 +117,10 @@ agg(column, ...columns) {

.lazy()
.groupByRolling({ indexColumn, period, offset, closed, by })
.groupByRolling({
indexColumn,
period,
offset,
closed,
by,
check_sorted,
})
.agg(column, ...columns)

@@ -120,0 +127,0 @@ .collectSync();

@@ -27,4 +27,5 @@ import * as series from "./series";

type When = lazy.When;
type WhenThen = lazy.WhenThen;
type WhenThenThen = lazy.WhenThenThen;
type Then = lazy.Then;
type ChainedWhen = lazy.ChainedWhen;
type ChainedThen = lazy.ChainedThen;
export import Config = cfg.Config;

@@ -69,3 +70,4 @@ export import Int8 = DataType.Int8;

export import lit = lazy.lit;
export import arange = lazy.arange;
export import intRange = lazy.intRange;
export import intRanges = lazy.intRanges;
export import argSortBy = lazy.argSortBy;

@@ -72,0 +74,0 @@ export import avg = lazy.avg;

@@ -105,3 +105,4 @@ "use strict";

pl.lit = lazy.lit;
pl.arange = lazy.arange;
pl.intRange = lazy.intRange;
pl.intRanges = lazy.intRanges;
pl.argSortBy = lazy.argSortBy;

@@ -108,0 +109,0 @@ pl.avg = lazy.avg;

@@ -375,6 +375,7 @@ import { DataFrame } from "../dataframe";

*/
sort(by: ColumnsOrExpr, reverse?: ValueOrArray<boolean>): LazyDataFrame;
sort(by: ColumnsOrExpr, descending?: ValueOrArray<boolean>, maintain_order?: boolean): LazyDataFrame;
sort(opts: {
by: ColumnsOrExpr;
reverse?: ValueOrArray<boolean>;
descending?: ValueOrArray<boolean>;
maintain_order?: boolean;
}): LazyDataFrame;

@@ -381,0 +382,0 @@ /**

@@ -144,10 +144,11 @@ "use strict";

},
groupByRolling({ indexColumn, by, period, offset, closed }) {
groupByRolling({ indexColumn, by, period, offset, closed, check_sorted }) {
offset = offset ?? `-${period}`;
closed = closed ?? "right";
by = prepareGroupbyInputs(by);
const lgb = _ldf.groupbyRolling(indexColumn, period, offset, closed, by);
check_sorted = check_sorted ?? false;
const lgb = _ldf.groupbyRolling(polars_internal_1.default.col(indexColumn), period, offset, closed, by, check_sorted);
return (0, groupby_1._LazyGroupBy)(lgb);
},
groupByDynamic({ indexColumn, every, period, offset, truncate, includeBoundaries, closed, by, start_by, }) {
groupByDynamic({ indexColumn, every, period, offset, truncate, includeBoundaries, closed, by, start_by, check_sorted, }) {
period = period ?? every;

@@ -160,3 +161,4 @@ offset = offset ?? `-${period}`;

start_by = start_by ?? "monday";
const lgb = _ldf.groupbyDynamic(indexColumn, every, period, offset, truncate, includeBoundaries, closed, by, start_by);
check_sorted = check_sorted ?? false;
const lgb = _ldf.groupbyDynamic(polars_internal_1.default.col(indexColumn), every, period, offset, truncate, includeBoundaries, closed, by, start_by, check_sorted);
return (0, groupby_1._LazyGroupBy)(lgb);

@@ -309,13 +311,13 @@ },

},
sort(arg, reverse = false) {
sort(arg, descending = false, maintain_order = false) {
if (arg?.by !== undefined) {
return this.sort(arg.by, arg.reverse);
return this.sort(arg.by, arg.descending, arg.maintain_order);
}
if (typeof arg === "string") {
return wrap("sort", arg, reverse, true, false);
return wrap("sort", arg, descending, maintain_order, true, false);
}
else {
reverse = [reverse].flat(3);
descending = [descending].flat(3);
const by = (0, utils_1.selectionToExprList)(arg, false);
return wrap("sortByExprs", by, reverse, true);
return wrap("sortByExprs", by, descending, maintain_order, true);
}

@@ -322,0 +324,0 @@ },

@@ -98,5 +98,6 @@ import * as dt from "./datetime";

*/
argSort(reverse?: boolean): Expr;
argSort({ reverse }: {
reverse: boolean;
argSort(reverse?: boolean, maintain_order?: boolean): Expr;
argSort({ reverse, maintain_order, }: {
reverse?: boolean;
maintain_order?: boolean;
}): Expr;

@@ -103,0 +104,0 @@ /** Get index of first unique value. */

@@ -117,5 +117,6 @@ "use strict";

},
argSort(reverse = false) {
argSort(reverse = false, maintain_order) {
reverse = reverse?.reverse ?? reverse;
return (0, exports._Expr)(_expr.argSort(reverse, false));
maintain_order = reverse?.maintain_order ?? maintain_order;
return (0, exports._Expr)(_expr.argSort(reverse, false, false, maintain_order));
},

@@ -359,5 +360,5 @@ argUnique() {

rollingMedian: rolling("rollingMedian"),
rollingQuantile(val, interpolation, windowSize, weights, minPeriods, center) {
rollingQuantile(val, interpolation, windowSize, weights, minPeriods, center, by, closedWindow) {
if (typeof val === "number") {
return wrap("rollingQuantile", val, interpolation ?? "nearest", {
return wrap("rollingQuantile", {
windowSize: `${windowSize}i`,

@@ -374,9 +375,3 @@ weights,

}
const options = {
windowSize: `${windowSize}i`,
weights: val?.["weights"] ?? weights,
minPeriods: val?.["minPeriods"] ?? minPeriods ?? windowSize,
center: val?.["center"] ?? center ?? false,
};
return wrap("rollingQuantile", val.quantile, val.interpolation ?? "nearest", options);
return wrap("rollingQuantile", val.quantile, val.interpolation ?? "nearest", `${windowSize}i`, val?.["weights"] ?? weights ?? null, val?.["minPeriods"] ?? minPeriods ?? windowSize, val?.["center"] ?? center ?? false, val?.["by"] ?? by, val?.["closedWindow"] ?? closedWindow ?? "left");
},

@@ -429,7 +424,7 @@ rollingSkew(val, bias = true) {

},
sort(reverse = false, nullsLast = false) {
sort(reverse = false, nullsLast = false, maintain_order = false) {
if (typeof reverse === "boolean") {
return wrap("sortWith", reverse, nullsLast, false);
return wrap("sortWith", reverse, nullsLast, false, maintain_order);
}
return wrap("sortWith", reverse?.reverse ?? false, reverse?.nullsLast ?? nullsLast, false);
return wrap("sortWith", reverse?.reverse ?? false, reverse?.nullsLast ?? nullsLast, false, reverse?.maintain_order ?? maintain_order);
},

@@ -436,0 +431,0 @@ sortBy(arg, reverse = false) {

@@ -43,10 +43,10 @@ "use strict";

diff(n = 1, nullBehavior = "ignore") {
return wrap("lstDiff", n, nullBehavior);
return wrap("listDiff", n, nullBehavior);
},
get(index) {
if (expr_1.Expr.isExpr(index)) {
return wrap("lstGet", index._expr);
return wrap("listGet", index._expr);
}
else {
return wrap("lstGet", polars_internal_1.default.lit(index));
return wrap("listGet", polars_internal_1.default.lit(index));
}

@@ -62,6 +62,6 @@ },

if (expr_1.Expr.isExpr(expr)) {
return wrap("lstEval", expr._expr, parallel);
return wrap("listEval", expr._expr, parallel);
}
else {
return wrap("lstEval", expr, parallel);
return wrap("listEval", expr, parallel);
}

@@ -73,3 +73,3 @@ },

join(separator = ",") {
return wrap("lstJoin", separator);
return wrap("listJoin", separator);
},

@@ -80,32 +80,32 @@ last() {

lengths() {
return wrap("lstLengths");
return wrap("listLengths");
},
max() {
return wrap("lstMax");
return wrap("listMax");
},
mean() {
return wrap("lstMean");
return wrap("listMean");
},
min() {
return wrap("lstMin");
return wrap("listMin");
},
reverse() {
return wrap("lstReverse");
return wrap("listReverse");
},
shift(n) {
return wrap("lstShift", n);
return wrap("listShift", n);
},
slice(offset, length) {
return wrap("lstSlice", offset, length);
return wrap("listSlice", offset, length);
},
sort(reverse = false) {
return typeof reverse === "boolean"
? wrap("lstSort", reverse)
: wrap("lstSort", reverse.reverse);
? wrap("listSort", reverse)
: wrap("listSort", reverse.reverse);
},
sum() {
return wrap("lstSum");
return wrap("listSum");
},
unique() {
return wrap("lstUnique");
return wrap("listUnique");
},

@@ -112,0 +112,0 @@ };

@@ -112,2 +112,26 @@ import { StringFunctions } from "../../shared_traits";

/**
* Parse string values as JSON.
* Throw errors if encounter invalid JSON strings.
* @params Not implemented ATM
* @returns DF with struct
* @example
* >>> df = pl.DataFrame( {json: ['{"a":1, "b": true}', null, '{"a":2, "b": false}']} )
* >>> df.select(pl.col("json").str.jsonExtract())
* shape: (3, 1)
* ┌─────────────┐
* │ json │
* │ --- │
* │ struct[2] │
* ╞═════════════╡
* │ {1,true} │
* │ {null,null} │
* │ {2,false} │
* └─────────────┘
* See Also
* ----------
* jsonPathMatch : Extract the first match of json string with provided JSONPath expression.
*/
jsonExtract(dtype?: DataType, inferSchemaLength?: number): Expr;
/**
* Extract the first match of json string with provided JSONPath expression.

@@ -118,2 +142,4 @@ * Throw errors if encounter invalid json strings.

* @param jsonPath - A valid JSON path query string
* @param dtype - The dtype to cast the extracted value to. If None, the dtype will be inferred from the JSON value.
* @param inferSchemaLength - How many rows to parse to determine the schema. If ``None`` all rows are used.
* @returns Utf8 array. Contain null if original value is null or the `jsonPath` return nothing.

@@ -120,0 +146,0 @@ * @example

@@ -47,2 +47,5 @@ "use strict";

},
jsonExtract(dtype, inferSchemaLength) {
return wrap("strJsonExtract", dtype, inferSchemaLength);
},
jsonPathMatch(pat) {

@@ -85,8 +88,8 @@ return wrap("strJsonPathMatch", pat);

},
strptime(dtype, fmt) {
strptime(dtype, format) {
if (dtype.equals(datatypes_1.DataType.Date)) {
return wrap("strParseDate", fmt, false, false);
return wrap("strToDate", format, false, false, false);
}
else if (dtype.equals(datatypes_1.DataType.Datetime("ms"))) {
return wrap("strParseDatetime", fmt, false, false);
return wrap("strToDatetime", format, undefined, undefined, false, false, false);
}

@@ -93,0 +96,0 @@ else {

@@ -115,14 +115,29 @@ import { Expr } from "./expr";

* > df.lazy()
* > .filter(pl.col("foo").lt(pl.arange(0, 100)))
* > .filter(pl.col("foo").lt(pl.intRange(0, 100)))
* > .collect()
* ```
*/
export declare function arange<T>(opts: {
export declare function intRange<T>(opts: {
low: any;
high: any;
step: number;
eager: boolean;
eager?: boolean;
}): any;
export declare function arange(low: any, high?: any, step?: number, eager?: true): Series;
export declare function arange(low: any, high?: any, step?: number, eager?: false): Expr;
export declare function intRange(low: any, high?: any, step?: number, eager?: true): Series;
export declare function intRange(low: any, high?: any, step?: number, eager?: false): Expr;
/***
* Generate a range of integers for each row of the input columns.
* @param start - Lower bound of the range (inclusive).
* @param end - Upper bound of the range (exclusive).
* @param step - Step size of the range.
* @param eager - Evaluate immediately and return a ``Series``. If set to ``False`` (default), return an expression instead.
* @return - Column of data type ``List(dtype)``.
* * @example
* ```
* const df = pl.DataFrame({"a": [1, 2], "b": [3, 4]})
* const result = df.select(pl.intRanges("a", "b"));
* ```
*/
export declare function intRanges(start: any, end: any, step?: number, eager?: false): Expr;
export declare function intRanges(start: any, end: any, step?: number, eager?: true): Series;
/** Alias for `pl.col("*")` */

@@ -137,3 +152,3 @@ export declare function all(): Expr;

*/
export declare function argSortBy(exprs: Expr[] | string[], reverse?: boolean | boolean[]): Expr;
export declare function argSortBy(exprs: Expr[] | string[], descending?: boolean | boolean[]): Expr;
/** Alias for mean. @see {@link mean} */

@@ -140,0 +155,0 @@ export declare function avg(column: string): Expr;

@@ -6,3 +6,3 @@ "use strict";

Object.defineProperty(exports, "__esModule", { value: true });
exports.element = exports.struct = exports.list = exports.tail = exports.spearmanRankCorr = exports.select = exports.quantile = exports.pearsonCorr = exports.nUnique = exports.median = exports.mean = exports.last = exports.head = exports.groups = exports.format = exports.first = exports.exclude = exports.cov = exports.count = exports.concatString = exports.concatList = exports.avg = exports.argSortBy = exports.all = exports.arange = exports.lit = exports.cols = exports.col = void 0;
exports.element = exports.struct = exports.list = exports.tail = exports.spearmanRankCorr = exports.select = exports.quantile = exports.pearsonCorr = exports.nUnique = exports.median = exports.mean = exports.last = exports.head = exports.groups = exports.format = exports.first = exports.exclude = exports.cov = exports.count = exports.concatString = exports.concatList = exports.avg = exports.argSortBy = exports.all = exports.intRanges = exports.intRange = exports.lit = exports.cols = exports.col = void 0;
const expr_1 = require("./expr");

@@ -132,5 +132,5 @@ const series_1 = require("../series");

exports.lit = lit;
function arange(opts, high, step, eager) {
function intRange(opts, high, step = 1, eager) {
if (typeof opts?.low === "number") {
return arange(opts.low, opts.high, opts.step, opts.eager);
return intRange(opts.low, opts.high, opts.step, opts.eager);
}

@@ -143,9 +143,21 @@ else {

return df
.select(arange(low, high, step).alias("arange"))
.getColumn("arange");
.select(intRange(low, high, step).alias("intRange"))
.getColumn("intRange");
}
return (0, expr_1._Expr)(polars_internal_1.default.arange(low, high, step));
return (0, expr_1._Expr)(polars_internal_1.default.intRange(low, high, step, eager));
}
}
exports.arange = arange;
exports.intRange = intRange;
function intRanges(start, end, step = 1, eager) {
start = (0, expr_1.exprToLitOrExpr)(start, false);
end = (0, expr_1.exprToLitOrExpr)(end, false);
if (eager) {
const df = (0, dataframe_1.DataFrame)({ a: [1] });
return df
.select(intRanges(start, end, step).alias("intRanges"))
.getColumn("intRanges");
}
return (0, expr_1._Expr)(polars_internal_1.default.intRanges(start, end, step, eager));
}
exports.intRanges = intRanges;
/** Alias for `pl.col("*")` */

@@ -163,8 +175,8 @@ function all() {

*/
function argSortBy(exprs, reverse = false) {
if (!Array.isArray(reverse)) {
reverse = Array.from({ length: exprs.length }, () => reverse);
function argSortBy(exprs, descending = false) {
if (!Array.isArray(descending)) {
descending = Array.from({ length: exprs.length }, () => descending);
}
const by = (0, utils_1.selectionToExprList)(exprs);
return (0, expr_1._Expr)(polars_internal_1.default.argsortBy(by, reverse));
return (0, expr_1._Expr)(polars_internal_1.default.argSortBy(by, descending));
}

@@ -171,0 +183,0 @@ exports.argSortBy = argSortBy;

import { Expr } from "./expr";
export interface When {
/** Values to return in case of the predicate being `true`.*/
then(expr: Expr): WhenThen;
then(expr: Expr): Then;
}
export interface WhenThen {
export interface Then {
/** Start another when, then, otherwise layer. */
when(predicate: Expr): WhenThenThen;
when(predicate: Expr): ChainedWhen;
/** Values to return in case of the predicate being `false`. */
otherwise(expr: Expr): Expr;
}
export interface WhenThenThen {
export interface ChainedWhen {
/** Values to return in case of the predicate being `true`. */
then(expr: Expr): ChainedThen;
}
export interface ChainedThen {
/** Start another when, then, otherwise layer. */
when(predicate: Expr): WhenThenThen;
when(predicate: Expr): ChainedWhen;
/** Values to return in case of the predicate being `true`. */
then(expr: Expr): WhenThenThen;
then(expr: Expr): ChainedThen;
/** Values to return in case of the predicate being `false`. */

@@ -18,0 +22,0 @@ otherwise(expr: Expr): Expr;

@@ -9,15 +9,20 @@ "use strict";

const polars_internal_1 = __importDefault(require("../internals/polars_internal"));
function WhenThenThen(_whenthenthen) {
function ChainedWhen(_chainedwhen) {
return {
when: ({ _expr }) => WhenThenThen(_whenthenthen.when(_expr)),
then: ({ _expr }) => WhenThenThen(_whenthenthen.then(_expr)),
otherwise: ({ _expr }) => expr_1.Expr(_whenthenthen.otherwise(_expr)),
then: ({ _expr }) => ChainedThen(_chainedwhen.then(_expr)),
};
}
function WhenThen(_whenthen) {
function ChainedThen(_chainedthen) {
return {
when: ({ _expr }) => WhenThenThen(_whenthen.when(_expr)),
otherwise: ({ _expr }) => expr_1.Expr(_whenthen.otherwise(_expr)),
when: ({ _expr }) => ChainedWhen(_chainedthen.when(_expr)),
then: ({ _expr }) => ChainedThen(_chainedthen.then(_expr)),
otherwise: ({ _expr }) => expr_1.Expr(_chainedthen.otherwise(_expr)),
};
}
function Then(_then) {
return {
when: ({ _expr }) => ChainedWhen(_then.when(_expr)),
otherwise: ({ _expr }) => expr_1.Expr(_then.otherwise(_expr)),
};
}
/**

@@ -29,3 +34,3 @@ * Utility function.

return {
then: ({ _expr }) => WhenThen(_when.then(_expr)),
then: ({ _expr }) => Then(_when.then(_expr)),
};

@@ -32,0 +37,0 @@ }

@@ -107,7 +107,7 @@ "use strict";

},
argSort(reverse = false, nullsLast = true) {
argSort(reverse = false, nullsLast = true, maintain_order = false) {
if (typeof reverse === "boolean") {
return _Series(_s.argsort(reverse, nullsLast, false));
return _Series(_s.argsort(reverse, nullsLast, maintain_order, false));
}
return _Series(_s.argsort(reverse.reverse, reverse.nullsLast ?? nullsLast));
return _Series(_s.argsort(reverse.reverse, reverse.nullsLast ?? nullsLast, reverse.maintain_order ?? maintain_order));
},

@@ -114,0 +114,0 @@ argTrue() {

@@ -96,2 +96,17 @@ import { DataType } from "../datatypes";

extract(pattern: string | RegExp, groupIndex: number): Series;
/***
* Parse string values as JSON.
* @returns Utf8 array. Contain null if original value is null or the `jsonPath` return nothing.
* @example
* s = pl.Series("json", ['{"a":1, "b": true}', null, '{"a":2, "b": false}']);
* s.str.json_extract().as("json");
* shape: (3,)
* Series: 'json' [struct[2]]
* [
* {1,true}
* {null,null}
* {2,false}
* ]
*/
jsonExtract(dtype?: DataType, inferSchemaLength?: number): Series;
/**

@@ -103,2 +118,4 @@ * Extract the first match of json string with provided JSONPath expression.

* @param jsonPath - A valid JSON path query string
* @param dtype - The dtype to cast the extracted value to. If None, the dtype will be inferred from the JSON value.
* @param inferSchemaLength - How many rows to parse to determine the schema. If ``None`` all rows are used.
* @returns Utf8 array. Contain null if original value is null or the `jsonPath` return nothing.

@@ -105,0 +122,0 @@ * @example

@@ -51,2 +51,5 @@ "use strict";

},
jsonExtract(dtype, inferSchemaLength) {
return wrap("strJsonExtract", dtype, inferSchemaLength);
},
jsonPathMatch(pat) {

@@ -53,0 +56,0 @@ return wrap("strJsonPathMatch", pat);

/// <reference types="node" />
import { ColumnsOrExpr, StartBy } from "./utils";
import { Expr } from "./lazy/expr";
import { InterpolationMethod, RollingOptions, RollingQuantileOptions, RollingSkewOptions } from "./types";
import { InterpolationMethod, RollingOptions, RollingQuantileOptions, RollingSkewOptions, ClosedWindow } from "./types";
import { DataType } from "./datatypes";

@@ -354,3 +354,3 @@ /**

rollingQuantile(options: RollingQuantileOptions): T;
rollingQuantile(quantile: number, interpolation?: InterpolationMethod, windowSize?: number, weights?: Array<number>, minPeriods?: Array<number>, center?: boolean): T;
rollingQuantile(quantile: number, interpolation?: InterpolationMethod, windowSize?: number, weights?: Array<number>, minPeriods?: Array<number>, center?: boolean, by?: String, closed?: ClosedWindow): T;
/**

@@ -1004,2 +1004,8 @@ * Compute a rolling skew

@param closed Defines if the window interval is closed or not.
@param check_sorted
When the ``by`` argument is given, polars can not check sortedness
by the metadata and has to do a full scan on the index column to
verify data is sorted. This is expensive. If you are sure the
data within the by groups is sorted, you can set this to ``False``.
Doing so incorrectly will lead to incorrect output

@@ -1055,3 +1061,3 @@ Any of `{"left", "right", "both" "none"}`

groupByRolling(opts: {
indexColumn: string;
indexColumn: ColumnsOrExpr;
by?: ColumnsOrExpr;

@@ -1061,2 +1067,3 @@ period: string;

closed?: "left" | "right" | "both" | "none";
check_sorted?: boolean;
}): T;

@@ -1112,2 +1119,8 @@ /**

Any of {"left", "right", "both" "none"}
@param check_sorted
When the ``by`` argument is given, polars can not check sortedness
by the metadata and has to do a full scan on the index column to
verify data is sorted. This is expensive. If you are sure the
data within the by groups is sorted, you can set this to ``False``.
Doing so incorrectly will lead to incorrect output
@param by Also group by this column/these columns

@@ -1125,3 +1138,4 @@ */

start_by: StartBy;
check_sorted?: boolean;
}): T;
}

@@ -169,1 +169,5 @@ /**

}
/**
* ClosedWindow types
*/
export type ClosedWindow = "None" | "Both" | "Left" | "Right";
{
"name": "nodejs-polars",
"version": "0.8.0",
"version": "0.8.1",
"repository": "https://github.com/pola-rs/nodejs-polars.git",

@@ -58,16 +58,16 @@ "license": "SEE LICENSE IN LICENSE",

"devDependencies": {
"@napi-rs/cli": "^2.16.1",
"@napi-rs/cli": "^2.16.2",
"@types/chance": "^1.1.3",
"@types/jest": "^29.5.2",
"@types/node": "^20.2.5",
"@types/jest": "^29.5.3",
"@types/node": "^20.4.2",
"chance": "^1.1.11",
"jest": "^29.5.0",
"jest": "^29.6.1",
"rome": "^12.1.3",
"source-map-support": "^0.5.21",
"ts-jest": "^29.1.0",
"ts-jest": "^29.1.1",
"ts-node": "^10.9.1",
"typedoc": "^0.24.7",
"typescript": "5.1.3"
"typedoc": "^0.24.8",
"typescript": "5.1.6"
},
"packageManager": "yarn@3.3.1",
"packageManager": "yarn@3.6.1",
"workspaces": [

@@ -77,12 +77,12 @@ "benches"

"optionalDependencies": {
"nodejs-polars-win32-x64-msvc": "0.8.0",
"nodejs-polars-darwin-x64": "0.8.0",
"nodejs-polars-linux-x64-gnu": "0.8.0",
"nodejs-polars-darwin-arm64": "0.8.0",
"nodejs-polars-linux-arm64-gnu": "0.8.0",
"nodejs-polars-linux-arm64-musl": "0.8.0",
"nodejs-polars-android-arm64": "0.8.0",
"nodejs-polars-win32-ia32-msvc": "0.8.0",
"nodejs-polars-linux-x64-musl": "0.8.0"
"nodejs-polars-win32-x64-msvc": "0.8.1",
"nodejs-polars-darwin-x64": "0.8.1",
"nodejs-polars-linux-x64-gnu": "0.8.1",
"nodejs-polars-darwin-arm64": "0.8.1",
"nodejs-polars-linux-arm64-gnu": "0.8.1",
"nodejs-polars-linux-arm64-musl": "0.8.1",
"nodejs-polars-android-arm64": "0.8.1",
"nodejs-polars-win32-ia32-msvc": "0.8.1",
"nodejs-polars-linux-x64-musl": "0.8.1"
}
}
SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc