Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

string-comparison

Package Overview
Dependencies
Maintainers
1
Versions
13
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

string-comparison

A library implementing different string similarity

  • 1.3.0
  • latest
  • Source
  • npm
  • Socket score

Version published
Maintainers
1
Created
Source

string-comparison

npm bundle size npm GitHub stars GitHub license

JavaScript implementation of tdebatty/java-string-similarity

A library implementing different string similarity, distance and sortMatch measures. A dozen of algorithms (including Levenshtein edit distance and sibblings, Longest Common Subsequence, cosine similarity etc.) are currently implemented. Check the summary table below for the complete list...

Download & Usage

download

npm install string-comparison --save
yarn add string-comparison
pnpm add string-comparison

usage

let stringComparison = require('string-comparison')
// or import stringComparison from 'string-comparison'

const Thanos = 'healed'
const Rival = 'sealed'
const Avengers = ['edward', 'sealed', 'theatre']

// use by cosine
let cos = stringComparison.Cosine

console.log(cos.similarity(Thanos, Rival))
console.log(cos.distance(Thanos, Rival))
console.log(cos.sortMatch(Thanos, Avengers))

OverView

The main characteristics of each implemented algorithm are presented below. The "cost" column gives an estimation of the computational cost to compute the similarity between two strings of length m and n respectively.

Measure(s)Normalized?Metric?TypeCostTypical usage
Jaccard indexsimilarity
distance
sortMatch
YesYesSetO(m+n)
Cosine similaritysimilarity
distance
sortMatch
YesNoProfileO(m+n)
Sorensen-Dice coefficientsimilarity
distance
sortMatch
YesNoSetO(m+n)
Levenshteinsimilarity
distance
sortMatch
NoYesO(m*n)
Jaro-Winklersimilarity distance
sortMatch
YesNoO(m*n)typo correction

Normalized, metric, similarity and distance

Although the topic might seem simple, a lot of different algorithms exist to measure text similarity or distance. Therefore the library defines some interfaces to categorize them.

(Normalized) similarity and distance

  • StringSimilarity : Implementing algorithms define a similarity between strings (0 means strings are completely different).
  • NormalizedStringSimilarity : Implementing algorithms define a similarity between 0.0 and 1.0, like Jaro-Winkler for example.
  • StringDistance : Implementing algorithms define a distance between strings (0 means strings are identical), like Levenshtein for example. The maximum distance value depends on the algorithm.
  • NormalizedStringDistance : This interface extends StringDistance. For implementing classes, the computed distance value is between 0.0 and 1.0. NormalizedLevenshtein is an example of NormalizedStringDistance.

Levenshtein

The Levenshtein distance between two words is the minimum number of single-character edits (insertions, deletions or substitutions) required to change one word into the other.

It is a metric string distance. This implementation uses dynamic programming (Wagner–Fischer algorithm), with only 2 rows of data. The space requirement is thus O(m) and the algorithm runs in O(m.n).

import { levenshtein } from "string-comparison"
import type {SortMatchResultType} from "string-comparison"

const Thanos = 'healed'
const Rival = 'sealed'
const Avengers = ['edward', 'sealed', 'theatre']

console.log(levenshtein.similarity(Thanos, Rival))
console.log(levenshtein.distance(Thanos, Rival))
console.log(levenshtein.sortMatch(Thanos, Avengers) as SortMatchResultType)

// output
0.8333333333333334
1
[
  { member: 'edward', index: 0, rating: 0.16666666666666663 },
  { member: 'theatre', index: 2, rating: 0.4285714285714286 },
  { member: 'sealed', index: 1, rating: 0.8333333333333334 }
]

Longest Common Subsequence

The longest common subsequence (LCS) problem consists in finding the longest subsequence common to two (or more) sequences. It differs from problems of finding common substrings: unlike substrings, subsequences are not required to occupy consecutive positions within the original sequences.

It is used by the diff utility, by Git for reconciling multiple changes, etc.

The LCS distance between strings X (of length n) and Y (of length m) is n + m - 2 |LCS(X, Y)| min = 0 max = n + m

LCS distance is equivalent to Levenshtein distance when only insertion and deletion is allowed (no substitution), or when the cost of the substitution is the double of the cost of an insertion or deletion.

This class implements the dynamic programming approach, which has a space requirement O(m.n), and computation cost O(m.n).

In "Length of Maximal Common Subsequences", K.S. Larsen proposed an algorithm that computes the length of LCS in time O(log(m).log(n)). But the algorithm has a memory requirement O(m.n²) and was thus not implemented here.

import { longestCommonSubsequence } from "string-comparison"
or 
import { lcs } from "string-comparison"


const Thanos = 'healed'
const Rival = 'sealed'
const Avengers = ['edward', 'sealed', 'theatre']

console.log(lcs.similarity(Thanos, Rival))
console.log(lcs.distance(Thanos, Rival))
console.log(lcs.sortMatch(Thanos, Avengers))

// output
0.8333333333333334
2
[
  { member: 'edward', index: 0, rating: 0.5 },
  { member: 'theatre', index: 2, rating: 0.6153846153846154 },
  { member: 'sealed', index: 1, rating: 0.8333333333333334 }
]

Metric Longest Common Subsequence

Distance metric based on Longest Common Subsequence, from the notes "An LCS-based string metric" by Daniel Bakkelund. http://heim.ifi.uio.no/~danielry/StringMetric.pdf

The distance is computed as 1 - |LCS(s1, s2)| / max(|s1|, |s2|)

import { metricLcs } from "string-comparison"
or 
import { mlcs } from "string-comparison"

const Thanos = 'healed'
const Rival = 'sealed'
const Avengers = ['edward', 'sealed', 'theatre']

console.log(metricLcs.similarity(Thanos, Rival))
console.log(metricLcs.distance(Thanos, Rival))
console.log(metricLcs.sortMatch(Thanos, Avengers))

// output
0.8333333333333334
0.16666666666666663
[
  { member: 'edward', index: 0, rating: 0.5 },
  { member: 'theatre', index: 2, rating: 0.5714285714285714 },
  { member: 'sealed', index: 1, rating: 0.8333333333333334 }
]

Cosine similarity

Like Q-Gram distance, the input strings are first converted into sets of n-grams (sequences of n characters, also called k-shingles), but this time the cardinality of each n-gram is not taken into account. Each input string is simply a set of n-grams. The Jaccard index is then computed as |V1 inter V2| / |V1 union V2|.

Distance is computed as 1 - similarity. Jaccard index is a metric distance.

import { cosine } from "string-comparison"

Sorensen-Dice coefficient

Similar to Jaccard index, but this time the similarity is computed as 2 * |V1 inter V2| / (|V1| + |V2|).

Distance is computed as 1 - similarity.

import { diceCoefficient } from "string-comparison"

Jaro-Winkler similarity

The Jaro-Winkler similarity is a string metric measuring edit distance between two strings. Jaro – Winkler Similarity is much similar to Jaro Similarity. They both differ when the prefix of two string match. Jaro – Winkler Similarity uses a prefix scale ‘p’ which gives a more accurate answer when the strings have a common prefix up to a defined maximum length l.

import { jaroWinkler } from "string-comparison"

API

  • cosine
  • diceCoefficient
  • jaccardIndex
  • levenshtein
  • lcs = longestCommonSubsequence
  • mlcs = metricLcs
  • jaroWinkler

Methods

  • similarity.
  • distance.
  • sortMatch

similarity

Implementing algorithms define a similarity between strings

params
  1. thanos [String]
  2. rival [String]
return

Return a similarity between 0.0 and 1.0

distance

Implementing algorithms define a distance between strings (0 means strings are identical)

params
  1. thanos [String]
  2. rival [String]
return

Return a number

sortMatch

params
  1. thanos [String]
  2. avengers [...String]
return

Return an array of objects - SortMatchResultType ex:

[
  { member: 'edward', rating: 0.16666666666666663 },
  { member: 'theatre', rating: 0.4285714285714286 },
  { member: 'mailed', rating: 0.5 },
  { member: 'sealed', rating: 0.8333333333333334 }
]

CHANGELOG

CHANGELOG

MIT

MIT

Keywords

FAQs

Package last updated on 29 Nov 2023

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc