Tabletojson: Converting Table to JSON objects made easy
Tabletojson attempts to convert local or remote HTML tables into JSON with a very low footprint.
Can be passed the markup for a single table as a string, a fragment of HTML or
an entire page or just a URL (with an optional callback function; promises also
supported).
The response is always an array. Every array entry in the response represents a
table found on the page (in same the order they were found in HTML).
As of version 2.0 tabletojson is completely written in typescript.
Incompatible changes
- Version 2 on request.js is not used anymore
- Version >=2.1.0 got is not used anymore and got replaced by node internal fetch. more information here...
- Switched from commonjs to module system. Bumped version to 3.0.0
- Providing a "hybrid" library to cope with the needs of both esm and commonjs. Bumped version to 4.0.1.
- Adding support for complex headings as key in the output json object. Bumped version to 4.1.0.
Conversion from version 1.+ to 2.x
- Require must be changed from
const tabletojson = require('../lib/tabletojson');
to either
const tabletojson = require('../lib/tabletojson').Tabletojson;
or
const {Tabletojson: tabletojson} = require('../lib/tabletojson');
- Replace request options by fetch options. More information here...
Conversion from version 2.0.1 to 3.x
- Tabletojson now uses esm. Use
import {Tabletojson as tabletojson} from 'tabletojson';
or import {tabletojson} from 'tabletojson';
- Added lowercase import
import {tabletojson} from 'tabletojson';
- If you are using Node 18 execute examples by calling:
npm run build:examples
cd dist/examples
node --experimental-vm-modules --experimental-specifier-resolution=node example-1.js --prefix=dist/examples
Basic usage
Install via npm
npm install tabletojson
esm
import {tabletojson} from 'tabletojson';
tabletojson.convertUrl('https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes', function (tablesAsJson) {
console.log(tablesAsJson[1]);
});
commonjs
const {tabletojson} = require('tabletojson');
tabletojson.convertUrl('https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes', function (tablesAsJson) {
console.log(tablesAsJson[1]);
});
Remote (convertUrl
)
import {tabletojson} from 'tabletojson';
tabletojson.convertUrl('https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes', function (tablesAsJson) {
console.log(tablesAsJson[1]);
});
Local (convert
)
Have a look in the examples.
import {tabletojson} from 'tabletojson';
import * as fs from 'fs';
import * as path from 'path';
const html = fs.readFileSync(path.resolve(process.cwd(), '../../test/tables.html'), {
encoding: 'utf-8',
});
const converted = tabletojson.convert(html);
console.log(converted);
Duplicate column headings
If there are duplicate column headings, subsequent headings are suffixed with a
count:
PLACE | VALUE | PLACE | VALUE |
---|
abc | 1 | def | 2 |
[{
PLACE: 'abc', VALUE: '1',
PLACE_2: 'def', VALUE_2: '2',
}]
Tables with rowspan
Having tables with rowspan, the content of the spawned cell must be available in
the respective object.
Parent | Child | Age |
---|
Marry | Sue | 15 |
Steve | 12 |
Tom | 3 |
[{
PARENT: 'Marry', CHILD: 'Tom', AGE, '3',
PARENT: 'Marry', CHILD: 'Steve', AGE, '12',
PARENT: 'Marry', CHILD: 'Sue', AGE, '15'
}]
Tables with complex rowspan
Having tables with complex rowspans, the content of the spawned cell must be available in the respective object.
Parent | Child | Age |
---|
Marry | Sue | 15 |
Steve | 12 |
Tom | 3 |
Taylor |
Peter | 17 |
[{
PARENT: 'Marry', CHILD: 'Sue', AGE, '15'
PARENT: 'Marry', CHILD: 'Steve', AGE, '12',
PARENT: 'Marry', CHILD: 'Tom', AGE, '3',
PARENT: 'Taylor', CHILD: 'Tom', AGE, '3',
PARENT: 'Taylor', CHILD: 'Peter', AGE, '17'
}]
Tables with headings in the first column
If a table contains headings in the first column you might get an unexpected
result, but you can pass a second argument with options with
{ useFirstRowForHeadings: true }
to have it treat the first column as it would
any other cell.
tabletojson.convertUrl(
'https://www.timeanddate.com/holidays/ireland/2017',
{ useFirstRowForHeadings: true },
function(tablesAsJson) {
console.log(tablesAsJson);
}
);
Tables with HTML
The following options are true by default, which converts all values to plain
text to give you an easier more readable object to work with:
- stripHtmlFromHeadings
- stripHtmlFromCells
If your table contains HTML you want to parse (for example for links) you can
set stripHtmlFromCells
to false
to treat it as raw text.
tabletojson.convertUrl(
'https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes',
{ stripHtmlFromCells: false },
function(tablesAsJson) {
console.log(tablesAsJson[1][0]);
}
);
Note: This doesn't work with nested tables, which it will still try to parse.
You probably don't need to set stripHtmlFromHeadings
to false
(and setting
it to false can make the results hard to parse), but if you do you can also set
both at the same time by setting stripHtml
to false
.
Use the following rows as keys in the output json object. The values are flattened and concatenated the values with 'concatWith' [default=undefined]
Input:
Industry | Operating income | Operating costs | Total profit |
amount (billion) | Year-over-year growth (%) | amount (billion) | Year-over-year growth (%) | amount (billion) | Year-over-year growth (%) |
$ | €* | $ | €* | $ | €* |
total | 843280,70 | 758952,63 | -0,30 | 718255,00 | 646429,50 | 0,20 | 46558,20 | 41902,38 | -11,70 |
Coal mining and washing industry | 22937,30 | 20643,57 | -13,90 | 14653,70 | 13188,33 | -7,50 | 5236,90 | 4713,21 | -26,30 |
Oil and gas extraction | 7605,10 | 6844,59 | -9,60 | 3863,60 | 3477,24 | 0,10 | 2592,70 | 2333,43 | -10,80 |
Ferrous metal mining and dressing industry | 3010,70 | 2709,63 | -4,40 | 2369,10 | 2132,19 | -4,10 | 326,60 | 293,94 | -23,80 |
Non-ferrous metal mining and dressing industry | 2180,90 | 1962,81 | -0,30 | 1394,30 | 1254,87 | -2,50 | 512,10 | 460,89 | 4,00 |
Non-metallic ore mining and dressing industry | 2244,70 | 2020,23 | -5,70 | 1612,00 | 1450,80 | -5,70 | 236,10 | 212,49 | -7,00 |
Mining professional and ancillary activities | 1537,30 | 1383,57 | 12,70 | 1453,70 | 1308,33 | 11,80 | 2,60 | 2,34 | -77,00 |
Note: Some indicators in this table have a situation where the total is not equal to the sum of the sub-items, which is due to rounding of the data and has not been mechanically adjusted.
* Conversion rate: 1$=0,9€
|
Output:
[
{
"Industry": "total",
"Operating income amount (billion) $": "843280,70",
"Operating income amount (billion) €*": "758952,63",
"Operating income Year-over-year growth (%)": "-0,30",
"Operating costs amount (billion) $": "718255,00",
"Operating costs amount (billion) €*": "646429,50",
"Operating costs Year-over-year growth (%)": "0,20",
"Total profit amount (billion) $": "46558,20",
"Total profit amount (billion) €*": "41902,38",
"Total profit Year-over-year growth (%)": "-11,70"
},
{
"Industry": "Coal mining and washing industry",
"Operating income amount (billion) $": "22937,30",
"Operating income amount (billion) €*": "20643,57",
"Operating income Year-over-year growth (%)": "-13,90",
"Operating costs amount (billion) $": "14653,70",
"Operating costs amount (billion) €*": "13188,33",
"Operating costs Year-over-year growth (%)": "-7,50",
"Total profit amount (billion) $": "5236,90",
"Total profit amount (billion) €*": "4713,21",
"Total profit Year-over-year growth (%)": "-26,30"
},
{
"Industry": "Oil and gas extraction",
"Operating income amount (billion) $": "7605,10",
"Operating income amount (billion) €*": "6844,59",
"Operating income Year-over-year growth (%)": "-9,60",
"Operating costs amount (billion) $": "3863,60",
"Operating costs amount (billion) €*": "3477,24",
"Operating costs Year-over-year growth (%)": "0,10",
"Total profit amount (billion) $": "2592,70",
"Total profit amount (billion) €*": "2333,43",
"Total profit Year-over-year growth (%)": "-10,80"
},
{
"Industry": "Ferrous metal mining and dressing industry",
"Operating income amount (billion) $": "3010,70",
"Operating income amount (billion) €*": "2709,63",
"Operating income Year-over-year growth (%)": "-4,40",
"Operating costs amount (billion) $": "2369,10",
"Operating costs amount (billion) €*": "2132,19",
"Operating costs Year-over-year growth (%)": "-4,10",
"Total profit amount (billion) $": "326,60",
"Total profit amount (billion) €*": "293,94",
"Total profit Year-over-year growth (%)": "-23,80"
},
{
"Industry": "Non-ferrous metal mining and dressing industry",
"Operating income amount (billion) $": "2180,90",
"Operating income amount (billion) €*": "1962,81",
"Operating income Year-over-year growth (%)": "-0,30",
"Operating costs amount (billion) $": "1394,30",
"Operating costs amount (billion) €*": "1254,87",
"Operating costs Year-over-year growth (%)": "-2,50",
"Total profit amount (billion) $": "512,10",
"Total profit amount (billion) €*": "460,89",
"Total profit Year-over-year growth (%)": "4,00"
},
{
"Industry": "Non-metallic ore mining and dressing industry",
"Operating income amount (billion) $": "2244,70",
"Operating income amount (billion) €*": "2020,23",
"Operating income Year-over-year growth (%)": "-5,70",
"Operating costs amount (billion) $": "1612,00",
"Operating costs amount (billion) €*": "1450,80",
"Operating costs Year-over-year growth (%)": "-5,70",
"Total profit amount (billion) $": "236,10",
"Total profit amount (billion) €*": "212,49",
"Total profit Year-over-year growth (%)": "-7,00"
},
{
"Industry": "Mining professional and ancillary activities",
"Operating income amount (billion) $": "1537,30",
"Operating income amount (billion) €*": "1383,57",
"Operating income Year-over-year growth (%)": "12,70",
"Operating costs amount (billion) $": "1453,70",
"Operating costs amount (billion) €*": "1308,33",
"Operating costs Year-over-year growth (%)": "11,80",
"Total profit amount (billion) $": "2,60",
"Total profit amount (billion) €*": "2,34",
"Total profit Year-over-year growth (%)": "-77,00"
},
{
"Industry": "Note: Some indicators in this table have a situation where the total is not equal to the sum of the sub-items, which is due to rounding of the data and has not been mechanically adjusted.\n * Conversion rate: 1$=0,9€"
}
]
Options
fetchOptions (only convertUrl
)
Tabletojson is using fetch api which is available in node from version 17.5.0 onwards to fetch remote HTML pages. See
mdn web docs on fetch for more information. The usage of
Tabletojson should now be the same in node as in browsers.
So if you need to get data from a remote server you can call tabletojson.convertUrl
and pass any
fetch-options (proxy, headers,...) by adding a RequestInit object to the options
passed to convertUrl
. For more information on how to configure request please
have a look at Browser Syntax or Node fetch
tabletojson.convertUrl('https://www.timeanddate.com/holidays/ireland/2017', {
useFirstRowForHeadings: true,
fetchOptions: {
...
}
});
Define the rows to be used as keys in the output json object. The values will be concatenated with the given concatWith value. [default=undefined]
const html = fs.readFileSync(path.resolve(process.cwd(), '../test/tables.html'), {
encoding: 'utf-8',
});
const converted = tabletojson.convert(html, {
id: ['table15'],
headers: {
to: 2,
concatWith: ' ',
},
});
console.log(JSON.stringify(converted, null, 2));
stripHtmlFromHeadings
Strip any HTML from heading cells. Default is true.
KEY | <b>VALUE</b>
----|-------------
abc | 1
dev | 2
[
{
KEY: 'abc', VALUE: '1'
},
{
KEY: 'dev', VALUE: '2'
}
]
[
{
KEY: 'abc', '<b>VALUE</b>': '1'
},
{
KEY: 'dev', '<b>VALUE</b>': '2'
}
]
stripHtmlFromCells
Strip any HTML from tableBody cells. Default is true.
KEY | VALUE
----|---------
abc | <i>1</i>
dev | <i>2</i>
[
{
KEY: 'abc', VALUE: '1'
},
{
KEY: 'dev', VALUE: '2'
}
]
[
{
KEY: 'abc', 'VALUE': '<i>1</i>'
},
{
KEY: 'dev', 'VALUE': '<i>2</i>'
}
]
forceIndexAsNumber
Instead of using column text (that sometime re-order the data), force an index as a number (string number).
{
"0": "",
"1": "A会",
"2": "B会",
"3": "C会",
"4": "Something",
"5": "Else",
"6": ""
}
countDuplicateHeadings
Default is true
. If set to false
, duplicate headings will not get a trailing
number. The value of the field will be the last value found in the table row:
PLACE | VALUE | PLACE | VALUE |
---|
abc | 1 | def | 2 |
ghi | 3 | jkl | 4 |
[
{
PLACE: 'def', VALUE: '2'
},
{
PLACE: 'jkl', VALUE: '4'
}
]
ignoreColumns
Array of indexes to be ignored, starting with 0. Default is 'null/undefined'.
NAME | PLACE | WEIGHT | SEX | AGE |
---|
Mel | 1 | 58 | W | 23 |
Tom | 2 | 78 | M | 54 |
Bill | 3 | 92 | M | 31 |
[
{
NAME: 'Mel', PLACE: '1', AGE: '23'
},
{
NAME: 'Tom', PLACE: '2', AGE: '54'
},
{
NAME: 'Bill', PLACE: '3', AGE: '31'
}
]
onlyColumns
Array of indexes that are taken, starting with 0. Default is 'null/undefined'.
If given, this option overrides ignoreColumns.
NAME | PLACE | WEIGHT | SEX | AGE |
---|
Mel | 1 | 58 | W | 23 |
Tom | 2 | 78 | M | 54 |
Bill | 3 | 92 | M | 31 |
[
{
NAME: 'Mel', AGE: '23'
},
{
NAME: 'Tom', AGE: '54'
},
{
NAME: 'Bill', AGE: '31'
}
]
ignoreHiddenRows
Indicates if hidden rows (display:none) are ignored. Default is true:
NAME | PLACE | WEIGHT | SEX | AGE |
---|
Mel | 1 | 58 | W | 23 |
Tom | 2 | 78 | M | 54 |
Bill | 3 | 92 | M | 31 |
[
{
NAME: 'Mel', PLACE: '1', WEIGHT: '58', SEX: 'W', AGE: '23'
},
{
NAME: 'Tom', PLACE: '2', WEIGHT: '78', SEX: 'M', AGE: '54'
},
{
NAME: 'Bill', PLACE: '3', WEIGHT: '92', SEX: 'M', AGE: '31'
}
]
[
{
NAME: 'Mel', PLACE: '1', WEIGHT: '58', SEX: 'W', AGE: '23'
},
{
NAME: 'Tom', PLACE: '2', WEIGHT: '78', SEX: 'M', AGE: '54'
},
{
NAME: 'Bill', PLACE: '3', WEIGHT: '92', SEX: 'M', AGE: '31'
}
},
{
NAME: 'Cat', PLACE: '4', WEIGHT: '4', SEX: 'W', AGE: '2'
}
]
headings
Array of Strings to be used as headings. Default is null
/undefined
.
If more headings are given than columns exist the overcounting ones will be ignored. If less headings
are given than existing values the overcounting values are ignored.
NAME | PLACE | WEIGHT | SEX | AGE |
---|
Mel | 1 | 58 | W | 23 |
Tom | 2 | 78 | M | 54 |
Bill | 3 | 92 | M | 31 |
[
{
A: 'Mel', B: '1', C: '58', D: 'W', E: '23'
},
{
A: 'Tom', B: '2', C: '78', D: 'M', E: '54'
},
{
A: 'Bill', B: '3', C: '92', D: 'M', E: '31'
}
]
[
{
A: 'Mel', B: '1', C: '58'
},
{
A: 'Tom', B: '2', C: '78'
},
{
A: 'Bill', B: '3', C: '92'
}
]
[
{
A: 'Mel', B: '1', C: '58', D: 'W', E: '23'
},
{
A: 'Tom', B: '2', C: '78', D: 'M', E: '54'
},
{
A: 'Bill', B: '3', C: '92', D: 'M', E: '31'
}
]
[
{
A: 'Mel', B: 'W', C: '23'
},
{
A: 'Tom', B: 'M', C: '54'
},
{
A: 'Bill', B: 'M', C: '31'
}
]
limitrows
Number of rows to which the resulting object should be limited to. Default is
null
/undefined
.
Huge Table (see test/tables.html)
Roleplayer Number | Name | Text to say |
---|
0 | Raife Parkinson | re dolor in hendrerit in vulputate ve |
1 | Hazel Schultz | usto duo dolores et ea rebum. Ste |
2 | Montana Delgado | psum dolor sit amet. Lorem ipsum dolor |
3 | Dianne Mcbride | sit ame olor sit amet. Lorem ipsum |
4 | Xena Lynch | us est Lorem ipsum dol |
5 | Najma Holding | akimata sanctus est Lorem ipsum dolor sit |
6 | Kiki House | ame nvidunt ut |
... | | |
197 | Montana Delgado | lores et ea rebum. Stet clita kasd gu a |
198 | Myrtle Conley | rebum. Stet clita kasd gubergren, no sea |
199 | Hanna Ellis | kimata sanctus est Lorem ipsum dolor si |
Example output with limitrows: 5
[ { 'Roleplayer Number': '0',
Name: 'Raife Parkinson',
'Text to say': 're dolor in hendrerit in vulputate ve' },
{ 'Roleplayer Number': '1',
Name: 'Hazel Schultz',
'Text to say': 'usto duo dolores et ea rebum. Ste' },
{ 'Roleplayer Number': '2',
Name: 'Montana Delgado',
'Text to say': 'psum dolor sit amet. Lorem ipsum dolor sit ame' },
{ 'Roleplayer Number': '3',
Name: 'Dianne Mcbride',
'Text to say': 'olor sit amet. Lorem ipsum' },
{ 'Roleplayer Number': '4',
Name: 'Xena Lynch',
'Text to say': 'us est Lorem ipsum dol' } ]
containsClasses
Array of classes to find a specific table using this class. Default is null
/
undefined
.
Known issues and limitations
This module only supports parsing basic tables with a simple horizontal set of
<th></th>
headings and corresponding <td></td>
cells.
It can give useless or weird results on tables that have complex structures
(such as nested tables) or multiple headers (such as on both X and Y axis).
You'll need to handle things like work out which tables to parse and (in most
cases) clean up the data. You might want to combine it it with modules like
json2csv or CsvToMarkdownTable.
You might want to use it with a module like 'cheerio' if you want to parse
specific tables identified by id or class (i.e. select them with cheerio and
pass the HTML of them as a string).
Example usages
import {tabletojson} from 'tabletojson';
const tablesAsJson = tabletojson.convert(html);
const firstTableAsJson = tablesAsJson[0];
const secondTableAsJson = tablesAsJson[1];
...
import {tabletojson} from 'tabletojson';
tabletojson.convertUrl('https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes', function (tablesAsJson) {
console.log(tablesAsJson[1]);
});
import {tabletojson} from 'tabletojson';
const url = 'http://en.wikipedia.org/wiki/List_of_countries_by_credit_rating';
tabletojson.convertUrl(url)
.then(function(tablesAsJson) {
const standardAndPoorRatings = tablesAsJson[1];
const fitchRatings = tablesAsJson[2];
});
import {tabletojson} from 'tabletojson';
import {Parser} from 'json2csv';
const url = 'http://en.wikipedia.org/wiki/List_of_countries_by_credit_rating';
tabletojson.convertUrl(url).then(function (tablesAsJson) {
const fitchRatings = tablesAsJson[2];
const json2csvParser = new Parser({
fields: ['Country/Region', 'Outlook'],
});
const csv = json2csvParser.parse(fitchRatings);
console.log(csv);
});
Limitations
- Tables needs to be "well formatted" to be convertable.
- Tables in tables are not processed.
Contributing
Improvements, fixes and suggestions are welcome.
You can find basic tests in the test folder. The library has been implemented
to be used straight forward way. Nonetheless there are some edge cases that
need to be tested and I would like to ask for support here. Feel free to fork
and create PRs here. Every bit of help is appreciated.
For more usage examples have a look in the examples folder that shows usage and would be a good start.
If you submit a pull request, please add an example for your use case, so I can
understand what you want it to do (as I want to get around to writing tests for
this and want to understand the sort of use cases people have).
Thanks
June 2018 - Very special thanks to the originator of the library, Iain Collins
(@iaincollins). Without his investigation in website grasping and mastering
cheerio this lib would have not been where it is right now. Also I would
personally like to say "Thank you" for your trust in passing me the ownership.
Marius (@maugenst)
Additional thanks to
- @roryok
- Max Thyen (@maxthyen)
- Thor Jacobsen (@twjacobsen)
- Michael Keller (@mhkeller)
- Jesús Leganés-Combarro (@piranna)
- João Otávio Ferreira Barbosa (@joaobarbosa)
for improvements and bug fixes.