Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

aamraz

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

aamraz

This project is a collection of Natural Language Processing tools for Kurdish Language.

  • 0.1.0
  • PyPI
  • Socket score

Maintainers
1

Aamraz - Kurdish NLP collection

Overview

Aamraz which is written "ئامراز" in kurdish script means "instrument". This project is a collection of Natural Language Processing tools for Kurdish Language. Despite being spoken by millions, Kurdish remains an under-resourced language in Natural Language Processing (NLP). Recognizing the rich cultural heritage and historical significance of the Kurdish people, we—regardless of ethnicity—are committed to advancing tools and pre-trained models that empower the Kurdish language in modern research and technology. Our work aims to foster further development and provide a foundation for future research and applications in NLP. see github repository

Installation

pip install aamraz

Base Features

  • Normalization
  • Tokenization
  • Stemming
  • Word Embedding: Creates vector representations of words.
  • Sentences Embedding: Creates vector representations of sentences.

Usage

import aamraz

# Normalization
normalizer= aamraz.Normalizer()
sample_sentence="قڵبە‌کە‌م‌ بە‌  کوردی‌  قسە‌ دە‌کات‌."
normalized_sentence=normalizer.normalize(sample_sentence)
print(normalized_sentence)

# Tokenization
tokenizer = aamraz.WordTokenizer()
sample_sentence="زوانی له دربره"
tokens = tokenizer.tokenize(sample_sentence)
print(tokens)

# Embedding by fasttext
model_path = 'kurdish_fasttext_skipgram_dim300_v1.bin'
embedding_model = aamraz.EmbeddingModel(model_path, dim=50)

sample_word="ئامراز"
sample_sentence="زوانی له دربره"

word_vector = embedding_model.word_embedding(sample_word)
sentence_vector = embedding_model.sentence_embedding(sample_sentence)

print(word_vector)
print(sentence_vector)

# Embedding by word2vec
model_path = 'kurdish_word2vec_model_dim100_v1.bin'
embedding_model = aamraz.EmbeddingModel(model_path, type='word2vec')

sample_word="ئامراز"
sample_sentence="زوانی له دربره"

word_vector = embedding_model.word_embedding(sample_word)
sentence_vector = embedding_model.sentence_embedding(sample_sentence)

print(word_vector)
print(sentence_vector)

# Stemming
stemmer=aamraz.Stemmer(method='simple')
stemmed=stemmer.stem("کتێبەکانمان")
print(stemmed)

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc