Security News
Research
Data Theft Repackaged: A Case Study in Malicious Wrapper Packages on npm
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
All Documentation | Models | Retrievers | Agents | Trainer & Optimizers
⚡ The Library to Build and to Auto-optimize LLM Applications ⚡
AdalFlow helps developers build and optimize LLM task pipelines. Embracing similar design pattern to PyTorch, AdalFlow is light, modular, and robust, with a 100% readable codebase.
LLMs are like water; they can be shaped into anything, from GenAI applications such as chatbots, translation, summarization, code generation, and autonomous agents to classical NLP tasks like text classification and named entity recognition. They interact with the world beyond the model’s internal knowledge via retrievers, memory, and tools (function calls). Each use case is unique in its data, business logic, and user experience.
Because of this, no library can provide out-of-the-box solutions. Users must build towards their own use case. This requires the library to be modular, robust, and have a clean, readable codebase. The only code you should put into production is code you either 100% trust or are 100% clear about how to customize and iterate.
Further reading: How We Started, Introduction, Design Philosophy and Class hierarchy.
We will ask the model to respond with explanation
and example
of a concept. To achieve this, we will build a simple pipeline to get the structured output as QAOutput
.
This leverages our two and only powerful base classes: Component
as building blocks for the pipeline and DataClass
to ease the data interaction with LLMs.
from dataclasses import dataclass, field
from adalflow.core import Component, Generator, DataClass
from adalflow.components.model_client import GroqAPIClient
from adalflow.components.output_parsers import JsonOutputParser
@dataclass
class QAOutput(DataClass):
explanation: str = field(
metadata={"desc": "A brief explanation of the concept in one sentence."}
)
example: str = field(metadata={"desc": "An example of the concept in a sentence."})
qa_template = r"""<SYS>
You are a helpful assistant.
<OUTPUT_FORMAT>
{{output_format_str}}
</OUTPUT_FORMAT>
</SYS>
User: {{input_str}}
You:"""
class QA(Component):
def __init__(self):
super().__init__()
parser = JsonOutputParser(data_class=QAOutput, return_data_class=True)
self.generator = Generator(
model_client=GroqAPIClient(),
model_kwargs={"model": "llama3-8b-8192"},
template=qa_template,
prompt_kwargs={"output_format_str": parser.format_instructions()},
output_processors=parser,
)
def call(self, query: str):
return self.generator.call({"input_str": query})
async def acall(self, query: str):
return await self.generator.acall({"input_str": query})
Run the following code for visualization and calling the model.
qa = QA()
print(qa)
# call
output = qa("What is LLM?")
print(output)
Simply by using print(qa)
, you can see the pipeline structure, which helps users understand any LLM workflow quickly.
QA(
(generator): Generator(
model_kwargs={'model': 'llama3-8b-8192'},
(prompt): Prompt(
template: <SYS>
You are a helpful assistant.
<OUTPUT_FORMAT>
{{output_format_str}}
</OUTPUT_FORMAT>
</SYS>
User: {{input_str}}
You:, prompt_kwargs: {'output_format_str': 'Your output should be formatted as a standard JSON instance with the following schema:\n```\n{\n "explanation": "A brief explanation of the concept in one sentence. (str) (required)",\n "example": "An example of the concept in a sentence. (str) (required)"\n}\n```\n-Make sure to always enclose the JSON output in triple backticks (```). Please do not add anything other than valid JSON output!\n-Use double quotes for the keys and string values.\n-Follow the JSON formatting conventions.'}, prompt_variables: ['output_format_str', 'input_str']
)
(model_client): GroqAPIClient()
(output_processors): JsonOutputParser(
data_class=QAOutput, examples=None, exclude_fields=None, return_data_class=True
(json_output_format_prompt): Prompt(
template: Your output should be formatted as a standard JSON instance with the following schema:
```
{{schema}}
```
{% if example %}
Examples:
```
{{example}}
```
{% endif %}
-Make sure to always enclose the JSON output in triple backticks (```). Please do not add anything other than valid JSON output!
-Use double quotes for the keys and string values.
-Follow the JSON formatting conventions., prompt_variables: ['schema', 'example']
)
(output_processors): JsonParser()
)
)
)
The Output
We structure the output to both track the data and potential errors if any part of the Generator component fails.
Here is what we get from print(output)
:
GeneratorOutput(data=QAOutput(explanation='LLM stands for Large Language Model, which refers to a type of artificial intelligence designed to process and generate human-like language.', example='For instance, LLMs are used in chatbots and virtual assistants, such as Siri and Alexa, to understand and respond to natural language input.'), error=None, usage=None, raw_response='```\n{\n "explanation": "LLM stands for Large Language Model, which refers to a type of artificial intelligence designed to process and generate human-like language.",\n "example": "For instance, LLMs are used in chatbots and virtual assistants, such as Siri and Alexa, to understand and respond to natural language input."\n}', metadata=None)
Focus on the Prompt
Use the following code will let us see the prompt after it is formatted:
qa2.generator.print_prompt(
output_format_str=qa2.generator.output_processors.format_instructions(),
input_str="What is LLM?",
)
The output will be:
<SYS>
You are a helpful assistant.
<OUTPUT_FORMAT>
Your output should be formatted as a standard JSON instance with the following schema:
```
{
"explanation": "A brief explanation of the concept in one sentence. (str) (required)",
"example": "An example of the concept in a sentence. (str) (required)"
}
```
-Make sure to always enclose the JSON output in triple backticks (```). Please do not add anything other than valid JSON output!
-Use double quotes for the keys and string values.
-Follow the JSON formatting conventions.
</OUTPUT_FORMAT>
</SYS>
User: What is LLM?
You:
You can switch to any model simply by using a different model_client
(provider) and model_kwargs
.
Let's use OpenAI's gpt-3.5-turbo
model.
from adalflow.components.model_client import OpenAIClient
self.generator = Generator(
model_client=OpenAIClient(),
model_kwargs={"model": "gpt-3.5-turbo"},
template=qa_template,
prompt_kwargs={"output_format_str": parser.format_instructions()},
output_processors=parser,
)
Install AdalFlow with pip:
pip install adalflow
Please refer to the full installation guide for more details.
AdalFlow full documentation available at adalflow.sylph.ai:
AdalFlow is named in honor of Ada Lovelace, the pioneering female mathematician who first recognized that machines could go beyond mere calculations. As a team led by a female founder, we aim to inspire more women to pursue careers in AI.
@software{Yin2024AdalFlow,
author = {Li Yin},
title = {{AdalFlow: The Library for Large Language Model (LLM) Applications}},
month = {7},
year = {2024},
doi = {10.5281/zenodo.12639531},
url = {https://github.com/SylphAI-Inc/LightRAG}
}
FAQs
The Library to Build and Auto-optimize LLM Applications
We found that adalflow demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Research
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
Research
Security News
Attackers used a malicious npm package typosquatting a popular ESLint plugin to steal sensitive data, execute commands, and exploit developer systems.
Security News
The Ultralytics' PyPI Package was compromised four times in one weekend through GitHub Actions cache poisoning and failure to rotate previously compromised API tokens.