Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

agent-torch

Package Overview
Dependencies
Maintainers
2
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

agent-torch

large population models

  • 0.4.0
  • PyPI
  • Socket score

Maintainers
2

Large Population Models

making complexity simple
differentiable learning over millions of autonomous agents

Released under the MIT license. Documentation Get in Touch Join Us

Large Population Models (LPMs) help simulate million-size populations by designing realistic environments and capturing expressive indvidual behavior. Our goal is to "re-invent the census": built entirely in simulation, captured passively and used to protect country-scale populations. Our research is early but actively making an impact - winning awards at AI conferences and being deployed across the world. Learn more about LPMs here.

AgentTorch LPMs have four design principles:

  • Scalability: AgentTorch models can simulate country-size populations in seconds on commodity hardware.
  • Differentiability: AgentTorch models can differentiate through simulations with stochastic dynamics and conditional interventions, enabling gradient-based learning.
  • Composition: AgentTorch models can compose with deep neural networks (eg: LLMs), mechanistic simulators (eg: mitsuba) or other LPMs. This helps describe agent behavior using LLMs, calibrate simulation parameters and specify expressive interaction rules.
  • Generalization: AgentTorch helps simulate diverse ecosystems - humans in geospatial worlds, cells in anatomical worlds, autonomous avatars in digital worlds.

AgentTorch is building the future of decision engines - inside the body, around us and beyond!

https://github.com/AgentTorch/AgentTorch/assets/13482350/4c3f9fa9-8bce-4ddb-907c-3ee4d62e7148

Installation

AgentTorch is meant to be used in a Python 3.9 environment. If you have not installed Python 3.9, please do so first from python.org/downloads.

Install the framework using pip, like so:

> pip install git+https://github.com/agenttorch/agenttorch

Some models require extra dependencies that have to be installed separately. For more information regarding this, as well as the hardware the project has been run on, please see docs/install.md.

Getting Started

The following section depicts the usage of existing models and population data to run simulations on your machine. It also acts as a showcase of the Agent Torch API.

A Jupyter Notebook containing the below examples can be found here.

Executing a Simulation with Gradient Based Learning

# re-use existing models and population data easily
from agent_torch.models import covid
from agent_torch.populations import astoria

# use the executor to plug-n-play
from agent_torch.core.executor import Executor
from agent_torch.core.dataloader import LoadPopulation

# agent_"torch" works seamlessly with the pytorch API
from torch.optim import SGD

loader = LoadPopulation(astoria)
simulation = Executor(model=covid, pop_loader=loader)

simulation.init(SGD)
simulation.execute()

Guides and Tutorials

Understanding the Framework

A detailed explanation of the architecture of the Agent Torch framework can be found here.

Creating a Model

A tutorial on how to create a simple predator-prey model can be found in the tutorials/ folder.

Contributing to Agent Torch

Thank you for your interest in contributing! You can contribute by reporting and fixing bugs in the framework or models, working on new features for the framework, creating new models, or by writing documentation for the project.

Take a look at the contributing guide for instructions on how to setup your environment, make changes to the codebase, and contribute them back to the project.

Impact

AgentTorch models are being deployed across the globe.

Impact

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc