Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

akima

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

akima

Akima Interpolation

  • 2024.5.24
  • PyPI
  • Socket score

Maintainers
1

Akima Interpolation

Akima is a Python library that implements Akima's interpolation method described in:

A new method of interpolation and smooth curve fitting based on local
procedures. Hiroshi Akima, J. ACM, October 1970, 17(4), 589-602.

A continuously differentiable sub-spline is built from piecewise cubic polynomials. It passes through the given data points and will appear smooth and natural.

This module is no longer being actively developed. Consider using scipy.interpolate.Akima1DInterpolator <http://docs.scipy.org/doc/scipy/reference/interpolate.html>_ instead.

:Author: Christoph Gohlke <https://www.cgohlke.com>_ :License: BSD 3-Clause :Version: 2024.5.24

Quickstart

Install the akima package and all dependencies from the Python Package Index <https://pypi.org/project/akima/>_::

python -m pip install -U akima

See Examples_ for using the programming interface.

Source code, examples, and support are available on GitHub <https://github.com/cgohlke/akima>_.

Requirements

This revision was tested with the following requirements and dependencies (other versions may work):

  • CPython <https://www.python.org>_ 3.9.13, 3.10.11, 3.11.9, 3.12.3
  • NumPy <https://pypi.org/project/numpy/>_ 1.26.4

Revisions

2024.5.24

  • Fix docstring examples not correctly rendered on GitHub.
  • Support NumPy 2.

2024.1.6

  • Add type hints.
  • Remove support for Python 3.8 and numpy 1.22 (NEP 29).

2022.9.12

  • Remove support for Python 3.7 (NEP 29).
  • Update metadata.

Examples

import numpy from matplotlib import pyplot from scipy.interpolate import Akima1DInterpolator def example(): ... '''Plot interpolated Gaussian noise.''' ... x = numpy.sort(numpy.random.random(10) * 100) ... y = numpy.random.normal(0.0, 0.1, size=len(x)) ... x2 = numpy.arange(x[0], x[-1], 0.05) ... y2 = interpolate(x, y, x2) ... y3 = Akima1DInterpolator(x, y)(x2) ... pyplot.title('Akima interpolation of Gaussian noise') ... pyplot.plot(x2, y2, 'r-', label='akima') ... pyplot.plot(x2, y3, 'b:', label='scipy', linewidth=2.5) ... pyplot.plot(x, y, 'go', label='data') ... pyplot.legend() ... pyplot.show() ... example()

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc