========
Aqueduct
Framework to make youre prediction performance-efficient and scalable.
Key Benefits
- Increases the throughput of your machine learning-based service
- Uses shared memory for instantaneous transfer of large amounts of data between processes
- All optimizations in one library
- Supports multiple frameworks
Documentation
Videos about aqueduct <docs/video.rst>
_- Getting started
-
Fundamentals <docs/fundamentals.rst>
_
-
Example <docs/example.rst>
_
Batching <docs/batching.rst>
_Logging <docs/logging.rst>
_Metrics <docs/metrics.rst>
_F.A.Q. <docs/faq.rst>
_- Additional features
-
Sentry support <docs/sentry.rst>
_
Examples
Aiohttp <examples/aiohttp/>
_Flask <examples/flask/>
_
Installation
Install using pip
:
.. code-block:: shell
pip install aqueduct
Moreover, aqueduct has "optional extras"
numpy
- support types from numpy in shared memoryaiohttp
- extension for aiohttp support(see more in examples)
.. code-block:: shell
pip install aqueduct[numpy,aiohttp]
Contact Us
Feel free to ask questions in Telegram: t.me/avito-ml <https://t.me/avito_ml>
_