You're Invited:Meet the Socket Team at BlackHat and DEF CON in Las Vegas, Aug 4-6.RSVP
Socket
Book a DemoInstallSign in
Socket

canonmap

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

canonmap

CanonMap - A Python library for entity canonicalization and mapping with enhanced configuration and response models

0.2.43
pipPyPI
Maintainers
1

CanonMap

CanonMap is a Python library for generating and managing canonical entity artifacts from various data sources. It provides a streamlined interface for processing data files and generating standardized artifacts that can be used for entity matching and data integration.

Features

  • Flexible Input Support: Process data from:

    • CSV/JSON files
    • Directories of data files
    • Pandas DataFrames
    • Python dictionaries
  • Artifact Generation:

    • Generate canonical entity lists
    • Create database schemas (supports multiple database types)
    • Generate semantic embeddings for entities
    • Clean and standardize field names
    • Process metadata fields
  • Database Support:

    • DuckDB (default)
    • SQLite
    • BigQuery
    • MariaDB
    • MySQL
    • PostgreSQL
  • Enhanced Configuration:

    • Separate configuration for artifacts and embeddings
    • Optional GCP integration with bucket management
    • Flexible sync strategies for cloud storage
    • Comprehensive error handling and logging
    • Local-only mode for development and testing

Installation

Lightweight Installation (Core Features Only)

pip install canonmap

Full Installation (Including Embedding Support)

pip install canonmap[embedding]

Note: The lightweight installation includes all core features (GCP integration, file processing, schema generation) but excludes embedding functionality. If you need semantic embeddings, use the full installation with [embedding] extras.

Quick Start

from canonmap import (
    CanonMap,
    CanonMapArtifactsConfig,
    CanonMapEmbeddingConfig,
    ArtifactGenerationRequest,
    EntityField,
    SemanticField
)

# Simple local-only configuration
artifacts_config = CanonMapArtifactsConfig(
    artifacts_local_path="./artifacts",
    gcs_config=None  # No GCS integration
)

embedding_config = CanonMapEmbeddingConfig(
    embedding_model_hf_name="sentence-transformers/all-MiniLM-L12-v2",
    embedding_model_local_path="./models/sentence-transformers/all-MiniLM-L12-v2",
    gcs_config=None  # No GCS integration
)

# Initialize CanonMap
canonmap = CanonMap(
    artifacts_config=artifacts_config,
    embedding_config=embedding_config,
    verbose=True
)

# Configure artifact generation
request = ArtifactGenerationRequest(
    input_path="path/to/your/data.csv",
    source_name="my_source",
    table_name="my_table",
    entity_fields=[
        EntityField(table_name="my_table", field_name="name"),
        EntityField(table_name="my_table", field_name="id")
    ],
    semantic_fields=[
        SemanticField(table_name="my_table", field_name="description"),
        SemanticField(table_name="my_table", field_name="notes")
    ],
    generate_schemas=True,
    generate_embeddings=True,
    generate_semantic_texts=True
)

# Generate artifacts
response = canonmap.generate_artifacts(request)
print(f"Generated {len(response.generated_artifacts)} artifacts")

With GCP Integration

from canonmap import (
    CanonMap,
    CanonMapGCPConfig,
    CanonMapCustomGCSConfig,
    CanonMapArtifactsConfig,
    CanonMapEmbeddingConfig,
    ArtifactGenerationRequest,
    EntityField,
    SemanticField
)

# 1. Set up base GCP configuration
base_gcp = CanonMapGCPConfig(
    gcp_service_account_json_path="path/to/service_account.json",
    troubleshooting=False
)

# 2. Configure GCS for artifacts and embeddings
artifacts_gcs = CanonMapCustomGCSConfig(
    gcp_config=base_gcp,
    bucket_name="your-artifacts-bucket",
    bucket_prefix="artifacts/",
    auto_create_bucket=True,
    sync_strategy="refresh"
)

embedding_gcs = CanonMapCustomGCSConfig(
    gcp_config=base_gcp,
    bucket_name="your-models-bucket",
    bucket_prefix="models/",
    auto_create_bucket=True,
    sync_strategy="refresh"
)

# 3. Create application-specific configs
artifacts_config = CanonMapArtifactsConfig(
    artifacts_local_path="./artifacts",
    gcs_config=artifacts_gcs
)

embedding_config = CanonMapEmbeddingConfig(
    embedding_model_hf_name="sentence-transformers/all-MiniLM-L12-v2",
    embedding_model_local_path="./models/sentence-transformers/all-MiniLM-L12-v2",
    gcs_config=embedding_gcs
)

# 4. Initialize CanonMap
canonmap = CanonMap(
    artifacts_config=artifacts_config,
    embedding_config=embedding_config,
    verbose=True,
    api_mode=False
)

# 5. Configure artifact generation
request = ArtifactGenerationRequest(
    input_path="path/to/your/data.csv",
    source_name="my_source",
    table_name="my_table",
    entity_fields=[
        EntityField(table_name="my_table", field_name="name"),
        EntityField(table_name="my_table", field_name="id")
    ],
    semantic_fields=[
        SemanticField(table_name="my_table", field_name="description"),
        SemanticField(table_name="my_table", field_name="notes")
    ],
    generate_schemas=True,
    generate_embeddings=True,
    generate_semantic_texts=True
)

# 6. Generate artifacts
response = canonmap.generate_artifacts(request)
print(f"Generated {len(response.generated_artifacts)} artifacts")

Artifact Generation Example

from canonmap import (
    CanonMap,
    CanonMapArtifactsConfig,
    CanonMapEmbeddingConfig,
    ArtifactGenerationRequest,
    EntityField,
    SemanticField,
    ArtifactGenerationResponse
)

# Set up configurations (local-only for this example)
artifacts_config = CanonMapArtifactsConfig(
    artifacts_local_path="./artifacts",
    gcs_config=None  # Local-only mode
)

embedding_config = CanonMapEmbeddingConfig(
    embedding_model_hf_name="sentence-transformers/all-MiniLM-L12-v2",
    embedding_model_local_path="./models",
    gcs_config=None  # Local-only mode
)

# Initialize CanonMap
cm = CanonMap(
    artifacts_config=artifacts_config,
    embedding_config=embedding_config,
    verbose=True
)

# Create generation request
gen_req = ArtifactGenerationRequest(
    input_path="input",
    source_name="football_data",
    entity_fields=[
        EntityField(table_name="passing", field_name="player"),
        EntityField(table_name="rushing", field_name="rusher_name"),
    ],
    semantic_fields=[
        SemanticField(table_name="passing", field_name="description"),
        SemanticField(table_name="rushing", field_name="notes"),
    ],
    generate_schemas=True,
    save_processed_data=True,
    generate_semantic_texts=True
)

# Generate artifacts
resp: ArtifactGenerationResponse = cm.generate_artifacts(gen_req)

# Access response details
print(f"Status: {resp.status}")
print(f"Generated {len(resp.generated_artifacts)} artifacts")
print(f"Processing time: {resp.processing_stats.processing_time_seconds:.2f} seconds")

Entity Mapping Example

from canonmap import (
    CanonMap,
    EntityMappingRequest,
    TableFieldFilter,
    EntityMappingResponse
)

# Initialize CanonMap (reusing configs from above)
cm = CanonMap(
    artifacts_config=artifacts_config,
    embedding_config=embedding_config
)

# Create mapping request
mapping_request = EntityMappingRequest(
    entities=["tim brady", "jake alan"],
    filters=[
        TableFieldFilter(table_name="passing", table_fields=["player"])
    ],
    num_results=3,
)

# Map entities
resp: EntityMappingResponse = cm.map_entities(mapping_request)

# Access mapping results
print(f"Processed {resp.total_entities_processed} entities")
print(f"Found {resp.total_matches_found} matches")

for mapping in resp.mappings:
    print(f"\nEntity: {mapping.entity}")
    for match in mapping.matches:
        print(f"  Match: {match.matched_entity} (Score: {match.score:.3f})")

Configuration Options

CanonMapGCPConfig

Base GCP configuration with service account and troubleshooting settings:

  • gcp_service_account_json_path: Path to GCP service account JSON file
  • troubleshooting: Enable detailed logging and validation

CanonMapCustomGCSConfig

Bucket-specific configuration extending the base GCP config:

  • gcp_config: Base GCP configuration
  • bucket_name: GCS bucket name
  • bucket_prefix: Optional prefix for bucket operations
  • auto_create_bucket: Automatically create bucket if it doesn't exist
  • auto_create_bucket_prefix: Automatically create prefix directory
  • sync_strategy: Sync strategy ("none", "missing", "overwrite", "refresh")

CanonMapArtifactsConfig

Configuration for artifact storage and management:

  • artifacts_local_path: Local directory for artifacts
  • gcs_config: Optional GCS configuration for artifact storage
  • troubleshooting: Enable troubleshooting mode

CanonMapEmbeddingConfig

Configuration for embedding model management:

  • embedding_model_hf_name: HuggingFace model name
  • embedding_model_local_path: Local path for model storage
  • gcs_config: Optional GCS configuration for model storage
  • troubleshooting: Enable troubleshooting mode

ArtifactGenerationRequest

Comprehensive configuration for artifact generation:

  • Input/Output:

    • input_path: Path to data file/directory or DataFrame/dict
    • source_name: Logical source name
    • table_name: Logical table name
  • Directory Processing:

    • recursive: Process subdirectories
    • file_pattern: File matching pattern (e.g., "*.csv")
    • table_name_from_file: Use filename as table name
  • Entity Processing:

    • entity_fields: List of fields to treat as entities
    • semantic_fields: List of fields to extract as individual semantic text files
    • use_other_fields_as_metadata: Include non-entity fields as metadata
  • Generation Options:

    • generate_canonical_entities: Generate entity list
    • generate_schemas: Generate database schema
    • generate_embeddings: Generate semantic embeddings
    • generate_semantic_texts: Generate semantic text files from semantic_fields
    • save_processed_data: Save cleaned data
    • database_type: Target database type
    • normalize_field_names: Standardize field names

Response Models

ArtifactGenerationResponse

Comprehensive response containing:

  • status: Success/failure status
  • message: Human-readable message
  • generated_artifacts: List of generated artifacts with metadata
  • processing_stats: Detailed processing statistics
  • errors: List of errors encountered
  • warnings: List of warnings
  • gcp_upload_info: GCP upload details
  • Convenience paths for common artifacts

EntityMappingResponse

Detailed mapping results including:

  • status: Success/failure status
  • mappings: List of entity mappings with matches
  • total_entities_processed: Number of entities processed
  • total_matches_found: Total number of matches found
  • processing_stats: Performance metrics
  • configuration_summary: Request configuration summary
  • errors: List of errors encountered
  • warnings: List of warnings

API Mode

For API deployments, initialize CanonMap with api_mode=True:

canonmap = CanonMap(
    artifacts_config=artifacts_config,
    embedding_config=embedding_config,
    verbose=True,
    api_mode=True  # Enables API-specific optimizations
)

Output

The generate_artifacts() method returns an ArtifactGenerationResponse containing:

  • Generated artifacts with metadata
  • Processing statistics and timing information
  • Error and warning information
  • GCP upload details (if applicable)
  • Convenience paths to common artifacts

Semantic Text Files

When semantic_fields is specified, CanonMap creates zip files containing individual text files for each non-null semantic field value:

  • Single table: {source}_{table}_semantic_texts.zip
  • Multiple tables: {source}_semantic_texts.zip (combined)
  • File naming: {table_name}_row_{row_index}_{field_name}.txt
  • Content: Raw text content from the specified semantic fields

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

License

This project is licensed under the MIT License - see the LICENSE file for details.

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts