Capsula
Capsula, a Latin word meaning box, is a Python package designed to help researchers and developers easily capture their command/function execution context for reproducibility.
See the documentation for more information.
With Capsula, you can capture:
The captured contexts are dumped into JSON files for future reference and reproduction.
Usage example
For project-wide settings, prepare a capsula.toml
file in the root directory of your project. An example of the capsula.toml
file is as follows:
[pre-run]
contexts = [
{ type = "CwdContext" },
{ type = "CpuContext" },
{ type = "PlatformContext" },
{ type = "GitRepositoryContext", name = "capsula", path = ".", path_relative_to_project_root = true },
{ type = "CommandContext", command = "uv lock --locked", cwd = ".", cwd_relative_to_project_root = true },
{ type = "FileContext", path = "pyproject.toml", copy = true, path_relative_to_project_root = true },
{ type = "FileContext", path = "uv.lock", copy = true, path_relative_to_project_root = true },
{ type = "CommandContext", command = "uv export > requirements.txt", cwd = ".", cwd_relative_to_project_root = true },
{ type = "FileContext", path = "requirements.txt", move = true, path_relative_to_project_root = true },
{ type = "EnvVarContext", name = "HOME" },
]
reporters = [{ type = "JsonDumpReporter" }]
[in-run]
watchers = [{ type = "UncaughtExceptionWatcher" }, { type = "TimeWatcher" }]
reporters = [{ type = "JsonDumpReporter" }]
[post-run]
reporters = [{ type = "JsonDumpReporter" }]
Then, all you need to do is decorate your Python function with the @capsula.run()
decorator. You can also use the @capsula.context()
decorator to add a context specific to the function.
The following is an example of a Python script that estimates the value of π using the Monte Carlo method:
import random
import capsula
@capsula.run()
@capsula.context(capsula.FunctionContext.builder(), mode="pre")
@capsula.context(capsula.FileContext.builder("pi.txt", move=True), mode="post")
def calculate_pi(n_samples: int = 1_000, seed: int = 42) -> None:
random.seed(seed)
xs = (random.random() for _ in range(n_samples))
ys = (random.random() for _ in range(n_samples))
inside = sum(x * x + y * y <= 1.0 for x, y in zip(xs, ys))
capsula.record("inside", inside)
pi_estimate = (4.0 * inside) / n_samples
print(f"Pi estimate: {pi_estimate}")
capsula.record("pi_estimate", pi_estimate)
print(f"Run name: {capsula.current_run_name()}")
with open("pi.txt", "w") as output_file:
output_file.write(f"Pi estimate: {pi_estimate}.")
if __name__ == "__main__":
calculate_pi(n_samples=1_000)
After running the script, a directory (calculate_pi_20240913_194900_2lxL
in this example) will be created under the <project-root>/vault
directory, and you will find the output files in the directory:
$ tree vault/calculate_pi_20240913_194900_2lxL
vault/calculate_pi_20240913_194900_2lxL
├── in-run-report.json
├── pi.txt
├── uv.lock
├── post-run-report.json
├── pre-run-report.json
├── pyproject.toml
└── requirements.txt
The contents of the JSON files are as follows:
Example of output pre-run-report.json
:
{
"cwd": "/Users/nomura/ghq/github.com/shunichironomura/capsula",
"cpu": {
"python_version": "3.8.20.final.0 (64 bit)",
"cpuinfo_version": [
9,
0,
0
],
"cpuinfo_version_string": "9.0.0",
"arch": "ARM_8",
"bits": 64,
"count": 16,
"arch_string_raw": "arm64",
"brand_raw": "Apple M3 Max"
},
"platform": {
"machine": "arm64",
"node": "MacBook-Pro.local",
"platform": "macOS-14.6.1-arm64-arm-64bit",
"release": "23.6.0",
"version": "Darwin Kernel Version 23.6.0: Mon Jul 29 21:14:46 PDT 2024; root:xnu-10063.141.2~1/RELEASE_ARM64_T6031",
"system": "Darwin",
"processor": "arm",
"python": {
"executable_architecture": {
"bits": "64bit",
"linkage": ""
},
"build_no": "default",
"build_date": "Sep 9 2024 22:25:40",
"compiler": "Clang 18.1.8 ",
"branch": "",
"implementation": "CPython",
"version": "3.8.20"
}
},
"git": {
"capsula": {
"working_dir": "/Users/nomura/ghq/github.com/shunichironomura/capsula",
"sha": "4ff5b9b9e5f6b527b0c2c660a5cb1a12937599b5",
"remotes": {
"origin": "ssh://git@github.com/shunichironomura/capsula.git"
},
"branch": "gitbutler/workspace",
"is_dirty": true,
"diff_file": "/Users/nomura/ghq/github.com/shunichironomura/capsula/vault/calculate_pi_20240913_194900_2lxL/capsula.diff"
}
},
"command": {
"uv lock --locked": {
"command": "uv lock --locked",
"cwd": "/Users/nomura/ghq/github.com/shunichironomura/capsula",
"returncode": 0,
"stdout": "",
"stderr": "Resolved 73 packages in 0.35ms\n"
},
"uv export > requirements.txt": {
"command": "uv export > requirements.txt",
"cwd": "/Users/nomura/ghq/github.com/shunichironomura/capsula",
"returncode": 0,
"stdout": "",
"stderr": "Resolved 73 packages in 0.32ms\n"
}
},
"file": {
"/Users/nomura/ghq/github.com/shunichironomura/capsula/pyproject.toml": {
"copied_to": [
"/Users/nomura/ghq/github.com/shunichironomura/capsula/vault/calculate_pi_20240913_194900_2lxL/pyproject.toml"
],
"moved_to": null,
"hash": {
"algorithm": "sha256",
"digest": "e331c7998167d64e4e90c9f2aa2c2fe9c9c3afe1cf8348f1d61998042b75040a"
}
},
"/Users/nomura/ghq/github.com/shunichironomura/capsula/uv.lock": {
"copied_to": [
"/Users/nomura/ghq/github.com/shunichironomura/capsula/vault/calculate_pi_20240913_194900_2lxL/uv.lock"
],
"moved_to": null,
"hash": {
"algorithm": "sha256",
"digest": "62e5b7a5125778dd664ee2dc0cb3c10640d15db3e55b40240c4d652f8afe40fe"
}
},
"/Users/nomura/ghq/github.com/shunichironomura/capsula/requirements.txt": {
"copied_to": [],
"moved_to": "/Users/nomura/ghq/github.com/shunichironomura/capsula/vault/calculate_pi_20240913_194900_2lxL",
"hash": {
"algorithm": "sha256",
"digest": "3ba457abcefb0010a7b350e8a2567b8ac890726608b99ce85defbb5d06e197de"
}
}
},
"env": {
"HOME": "/Users/nomura"
},
"function": {
"calculate_pi": {
"file_path": "examples/simple_decorator.py",
"first_line_no": 15,
"bound_args": {
"n_samples": 1000,
"seed": 42
}
}
}
}
Example of output in-run-report.json
:
{
"inside": 782,
"pi_estimate": 3.128,
"time": {
"execution_time": "0:00:00.000271"
},
"exception": {
"exception": {
"exc_type": null,
"exc_value": null,
"traceback": null
}
}
}
Example of output post-run-report.json
:
{
"file": {
"pi.txt": {
"copied_to": [],
"moved_to": "/Users/nomura/ghq/github.com/shunichironomura/capsula/vault/calculate_pi_20240913_194900_2lxL",
"hash": {
"algorithm": "sha256",
"digest": "a64c761cb6b6f9ef1bc1f6afa6ba44d796c5c51d14df0bdc9d3ab9ced7982a74"
}
}
}
}
Installation
You can install Capsula via pip:
pip install capsula
Or via conda:
conda install conda-forge::capsula
Licensing
This project is licensed under the terms of the MIT.
Additionally, this project includes code derived from the Python programming language, which is licensed under the Python Software Foundation License Version 2 (PSF-2.0). For details, see the LICENSE file.