Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

cnkalman

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

cnkalman

Support tools for cnkalman

  • 0.1.14
  • PyPI
  • Socket score

Maintainers
1

CNKalman Build and Test

This is a relatively low level implementation of a kalman filter; with support for extended and iterative extended kalman filters. The goals of the project are to provide a numerically stable, robust EKF implementation which is both fast and portable.

The main logic is written in C and only needs the associated matrix library to work; and there are C++ wrappers provided for convenience.

Tutorial on Kalman Filter Theory

There was originally going to be a more in depth discussion of the theoretical side but there isn't much one could do to improve on the very in depth tutorial by Roger Labbe.

Features

Quick start

kalman_example.c

#include <cnkalman/kalman.h>
#include <stdio.h>

static inline void kalman_transition_model_fn(FLT dt, const struct cnkalman_state_s *k, const struct CnMat *x0,
struct CnMat *x1, struct CnMat *F) {
    // Logic to fill in the next state x1 and the associated transition matrix F
}

static inline void kalman_process_noise_fn(void *user, FLT dt, const struct CnMat *x, struct CnMat *Q) {
    // Logic to fill in the process covariance Q
}

static inline bool kalman_measurement_model_fn(void *user, const struct CnMat *Z, const struct CnMat *x_t,
struct CnMat *y, struct CnMat *H_k) {
    // Logic to fill in the residuals `y`, and the jacobian of the predicted measurement function `h`
    return false; // This should return true if the jacobian and evaluation were valid.
}

int main() {
    int state_cnt = 1;
    cnkalman_state_t kalman_state = { 0 };
    cnkalman_state_init(&kalman_state, state_cnt, kalman_transition_model_fn, kalman_process_noise_fn, 0, 0);
    // Uncomment the next line if you want to use numerical jacobians for the transition matrix
    //kalman_state.transition_jacobian_mode = cnkalman_jacobian_mode_two_sided; 
    
    cnkalman_meas_model_t kalman_meas_model = { 0 };
    cnkalman_meas_model_init(&kalman_state, "Example Measurement", &kalman_meas_model, kalman_measurement_model_fn);
    // Uncomment the next line if you want to use numerical jacobians for this measurement
    // kalman_meas_model.meas_jacobian_mode = cnkalman_jacobian_mode_two_sided; 
    
    CnMat Z, R;
    // Logic to fill in measurement matrix Z and measurement covariance matrix R
    cnkalman_meas_model_predict_update(1, &kalman_meas_model, 0, &Z, &R);
    
    printf("Output:%f\n", cn_as_vector(&kalman_state.state)[0]);
    return 0;
}

Code Generation

One of the more difficult things about extended kalman filters is the fact that calculating the jacobian for even a simple measurement or prediction function can be tedious and error prone. An optional portion of cnkalman is easy integration of symengine in such a way that you can write the objective function in python and it'll generate the C implementation of both the function itself as well as it's jacobian with each of it's inputs.

BikeLandmarks.py

from symengine import atan2, asin, cos, sin, tan, sqrt
import cnkalman.codegen as cg

@cg.generate_code(state = 3, u = 2)
def predict_function(dt, wheelbase, state, u):
    x, y, theta = state
    v, alpha = u
    d = v * dt
    R = wheelbase/tan(alpha)
    beta = d / wheelbase * tan(alpha)

    return [x + -R * sin(theta) + R * sin(theta + beta),
            y + R * cos(theta) - R * cos(theta + beta),
            theta + beta]

@cg.generate_code(state = 3, landmark = 2)
def meas_function(state, landmark):
    x, y, theta = state
    px, py = landmark

    hyp = (px-x)**2 + (py-y)**2
    dist = sqrt(hyp)

    return [dist, atan2(py - y, px - x) - theta]

There are limitations in what type of logic is permissible here -- it must be something that is analytically tractable -- but most objective functions themselves are not too complicated to write.

Notice that for array-type input like state and u above, you must specify a size hint.

When ran, this python script generates the companion BikeLandmarks.gen.h which has the generated code, and callouts such as:

static inline void gen_predict_function(CnMat* out, const FLT dt, const FLT wheelbase, const FLT* state, const FLT* u);
static inline void gen_predict_function_jac_state(CnMat* Hx, const FLT dt, const FLT wheelbase, const FLT* state, const FLT* u);

If you include this project in as a cmake project, a cmake function cnkalman_generate_code is available that makes this an optional part of your build process.

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc