Security News
Research
Data Theft Repackaged: A Case Study in Malicious Wrapper Packages on npm
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
(Not this root)
A simple root-finding package written in Cython. Many of the implemented methods can't be found in common Python libraries.
namedtuple
-like Cython Extension object instead of
namedtuple
..pyx
files)cy-root is now available on PyPI.
pip install cy-root
Alternatively, you can build from source. Make sure you have all the dependencies installed, then clone this repo and run:
git clone git://github.com/inspiros/cy-root.git
cd cy-root
pip install .
Note: For more information about the listed algorithms, please use Google until I update the references.
Methods that can be combined with any Newton-like root-finding methods to discard the need of analytical derivatives.
Use find_scalar_root
or find_vector_root
and pass method name as the first argument.
This example shows the use of find_scalar_root
function with itp
method.
from cyroot import find_scalar_root
f = lambda x: x ** 2 - 612
result = find_scalar_root(method='itp', f=f, a=-10, b=50)
print(result)
Output:
RootResults(root=24.73863375370596, f_root=-1.1368683772161603e-13, iters=8, f_calls=10, bracket=(24.73863369031373, 24.738633753846678), f_bracket=(-3.1364744472739403e-06, 6.962181942071766e-09), precision=6.353294779160024e-08, error=1.1368683772161603e-13, converged=True, optimal=True)
The names and pointers to all implemented methods are stored in two dictionaries SCALAR_ROOT_FINDING_METHODS
and
VECTOR_ROOT_FINDING_METHODS
.
from cyroot import SCALAR_ROOT_FINDING_METHODS, VECTOR_ROOT_FINDING_METHODS
print('scalar root methods:', SCALAR_ROOT_FINDING_METHODS.keys())
print('vector root methods:', VECTOR_ROOT_FINDING_METHODS.keys())
Alternatively, import the function directly.
You can also see the full list of input arguments of by using help()
on them.
This example shows the use of muller
method for finding complex root:
from cyroot import muller
# This function has no real root
f = lambda x: x ** 4 + 4 * x ** 2 + 5
# But Muller's method can be used to find complex root
result = muller(f, x0=0, x1=10, x2=20)
print(result)
Output:
RootResults(root=(0.34356074972251255+1.4553466902253551j), f_root=(-8.881784197001252e-16-1.7763568394002505e-15j), iters=43, f_calls=43, precision=3.177770418807502e-08, error=1.9860273225978185e-15, converged=True, optimal=True)
Considering the parabola $f(x)=x^2-612$ in Example 1 with initial bounds $(a,b)$ where $a=-b$, many bracketing methods will fail to find a root as the values evaluated at initial bracket are identical.
In this example, we use the hybisect
method which repeatedly bisects the search regions until the Bolzano criterion
holds, thus can find multiple roots:
import math
from cyroot import hybisect
f = lambda x: x ** 2 - 612
# interval arithmetic function of f
interval_f = lambda x_l, x_h: ((min(abs(x_l), abs(x_h))
if math.copysign(1, x_l) * math.copysign(1, x_h) > 0
else 0) ** 2 - 612,
max(abs(x_l), abs(x_h)) ** 2 - 612)
result = hybisect(f, interval_f, -50, 50)
print(result)
Output:
RootResults(root=[-24.738633753707973, 24.738633753707973], f_root=[9.936229616869241e-11, 9.936229616869241e-11], split_iters=1, iters=[43, 43], f_calls=(92, 3), bracket=[(-24.738633753710815, -24.73863375370513), (24.73863375370513, 24.738633753710815)], f_bracket=[(nan, nan), (nan, nan)], precision=[5.6843418860808015e-12, 5.6843418860808015e-12], error=[9.936229616869241e-11, 9.936229616869241e-11], converged=[True, True], optimal=[True, True])
This example shows the use of the halley
method with functions returning first and second order derivatives of f
:
from cyroot import halley
f = lambda x: x ** 3 - 5 * x ** 2 + 2 * x - 1
# first order derivative
df = lambda x: 3 * x ** 2 - 10 * x + 2
# second order derivative
d2f = lambda x: 6 * x - 10
result = halley(f, df, d2f, x0=1.5)
print(result)
Output:
RootResults(root=4.613470267581537, f_root=-3.623767952376511e-13, df_root=(19.7176210537612, 17.68082160548922), iters=11, f_calls=(12, 12, 12), precision=4.9625634836147965e-05, error=3.623767952376511e-13, converged=True, optimal=True)
The householder
method supports an arbitrary number of higher order derivatives:
from cyroot import householder
f = lambda x: x ** 3 - 5 * x ** 2 + 2 * x - 1
df = lambda x: 3 * x ** 2 - 10 * x + 2
d2f = lambda x: 6 * x - 10
d3f = lambda x: 6
result = householder(f, dfs=[df, d2f, d3f], x0=1.5)
print(result) # same result
Similarly, to find roots of systems of equations with Newton-like methods, you have to define functions returning
Jacobian (and Hessian) of F
.
This example shows the use of generalized_super_halley
method:
import numpy as np
from cyroot import generalized_super_halley
# all functions for vector root methods must take a numpy array
# as argument, and return an array-like object
F = lambda x: np.array([x[0] ** 2 + 2 * x[0] * np.sin(x[1]) - x[1],
4 * x[0] * x[1] ** 2 - x[1] ** 3 - 1])
# Jacobian
J = lambda x: np.array([
[2 * x[0] + 2 * np.sin(x[1]), 2 * x[0] * np.cos(x[1]) - 1],
[4 * x[1] ** 2, 8 * x[0] * x[1] - 3 * x[1] ** 2]
])
# Hessian
H = lambda x: np.array([
[[2, 2 * np.cos(x[1])],
[2 * np.cos(x[1]), -2 * x[0] * np.sin(x[1])]],
[[0, 8 * x[1]],
[8 * x[1], 8 * x[0] - 6 * x[1]]]
])
result = generalized_super_halley(F, J, H, x0=np.array([2., 2.]))
print(result)
Output: (a bit messy)
RootResults(root=array([0.48298601, 1.08951589]), f_root=array([-4.35123049e-11, -6.55444587e-11]), df_root=(array([[ 2.73877785, -0.55283751],
[ 4.74817951, 0.6486328 ]]), array([[[ 2. , 0.92582907],
[ 0.92582907, -0.85624041]],
[[ 0. , 8.71612713],
[ 8.71612713, -2.6732073 ]]])), iters=3, f_calls=(4, 4, 4), precision=0.0005808146393164461, error=6.554445874940029e-11, converged=True, optimal=True)
For vector bracketing root methods or vector root methods with multiple initial guesses, the input should be a 2D
np.ndarray
.
This example shows the use of vrahatis
method (a generalized bisection) with the example function in the original
paper:
import numpy as np
from cyroot import vrahatis
F = lambda x: np.array([x[0] ** 2 - 4 * x[1],
-2 * x[0] + x[1] ** 2 + 4 * x[1]])
# If the initial points do not form an admissible n-polygon,
# an exception will be raised.
x0s = np.array([[-2., -0.25],
[0.5, 0.25],
[2, -0.25],
[0.6, 0.25]])
result = vrahatis(F, x0s=x0s)
print(result)
Output:
RootResults(root=array([4.80212874e-11, 0.00000000e+00]), f_root=array([ 2.30604404e-21, -9.60425747e-11]), iters=34, f_calls=140, bracket=array([[ 2.29193750e-10, 2.91038305e-11],
[-6.54727619e-12, 2.91038305e-11],
[ 4.80212874e-11, 0.00000000e+00],
[-6.98492260e-11, 0.00000000e+00]]), f_bracket=array([[-1.16415322e-10, -3.41972179e-10],
[-1.16415322e-10, 1.29509874e-10],
[ 2.30604404e-21, -9.60425747e-11],
[ 4.87891437e-21, 1.39698452e-10]]), precision=2.9904297647806717e-10, error=9.604257471622717e-11, converged=True, optimal=True)
This example shows the use of finite_difference
to approximate derivatives when analytical solutions are not
available:
import math
from cyroot import finite_difference
f = lambda x: (math.sin(x) + 1) ** x
x = 3 * math.pi / 2
d3f_x = finite_difference(f, x,
h=1e-4, # step
order=1, # order
kind='forward') # type: forward, backward, or central
# 7.611804179666343e-36
Similarly, generalized_finite_difference
can compute vector derivative of arbitrary order
(order=1
for Jacobian, order=2
for Hessian), and h
can be a number or a np.ndarray
containing different
step sizes for each dimension:
import numpy as np
from cyroot import generalized_finite_difference
F = lambda x: np.array([x[0] ** 3 - 3 * x[0] * x[1] + 5 * x[1] - 7,
x[0] ** 2 + x[0] * x[1] ** 2 - 4 * x[1] ** 2 + 3.5])
x = np.array([2., 3.])
# Derivatives of F will have shape (m, *([n] * order))
# where n is number of inputs, m is number of outputs
J_x = generalized_finite_difference(F, x, h=1e-4, order=1) # Jacobian
# array([[ 2.99985, -1.00015],
# [ 13.0003 , -11.9997 ]])
H_x = generalized_finite_difference(F, x, h=1e-3, order=2) # Hessian
# array([[[12. , -3. ],
# [-3. , 0. ]],
# [[ 2. , 6.001],
# [ 6.001, -3.998]]])
K_x = generalized_finite_difference(F, x, h=1e-2, order=3) # Kardashian, maybe
# array([[[[ 6.00000000e+00, 2.32830644e-10],
# [ 2.32830644e-10, 2.32830644e-10]],
# [[ 2.32830644e-10, 2.32830644e-10],
# [ 2.32830644e-10, 1.11758709e-08]]],
# [[[ 0.00000000e+00, -3.72529030e-09],
# [-3.72529030e-09, 1.99999999e+00]],
# [[-3.72529030e-09, 1.99999999e+00],
# [ 1.99999999e+00, -1.67638063e-08]]]])
Conveniently, you can use the FiniteDifference
and GeneralizedFiniteDifference
classes to wrap our function and
pass them to any Newton-like methods.
This is actually the default behavior when derivative functions of all Newton-like methods or the initial Jacobian guess of some vector quasi-Newton methods are not provided.
from cyroot import GeneralizedFiniteDifference, generalized_halley
J = GeneralizedFiniteDifference(F, h=1e-4, order=1)
H = GeneralizedFiniteDifference(F, h=1e-3, order=2)
result = generalized_halley(F, J=J, H=H, x0=x)
print(result)
Output:
RootResults(root=array([2.16665878, 2.11415683]), f_root=array([-5.47455414e-11, 1.05089271e-11]), df_root=(array([[ 7.74141032, -1.49997634],
[ 8.80307666, -7.75212506]]), array([[[ 1.30059527e+01, -3.00000000e+00],
[-3.00000000e+00, -4.54747351e-13]],
[[ 2.00000000e+00, 4.22931366e+00],
[ 4.22931366e+00, -3.66668244e+00]]])), iters=4, f_calls=(5, 211, 211), precision=1.0327220168881081e-07, error=5.474554143347632e-11, converged=True, optimal=True)
The returned result
is a namedtuple-like object whose elements depend on the type of the method:
root
: the solved root.f_root
: value evaluated at root.iters
: number of iterations.f_calls
: number of function calls.precision
: width of final bracket (for bracketing methods), or absolute difference of root with the last
estimation, or the span of the set of final estimations.error
: absolute value of f_root
.converged
: True
if the stopping criterion is met, False
if the procedure terminated prematurely.optimal
: True
only if the error tolerance is satisfied abs(f_root) <= etol
.bracket
: final bracket.f_bracket
: value evaluated at final bracket.df_root
: derivative or tuple of derivatives (of increasing orders) evaluated at root.Notes:
converged
can be True
even if the solution is not optimal, which means the routine stopped because the
precision tolerance is satisfied.scipy.optimize.root
users, the stopping condition arguments etol
, ertol
, ptol
, prtol
are equivalent to
f_tol
, f_rtol
, x_tol
, x_rtol
, respectively (but not identical).The default values for stop condition arguments (i.e. etol
, ertol
, ptol
, prtol
, max_iter
) are globally set to
the values defined in _defaults.py
, and can be modified dynamically as follows:
import cyroot
cyroot.set_default_stop_condition_args(
etol=1e-7,
ptol=0, # disable precision tolerance
max_iter=100)
help(cyroot.illinois) # run to check the updated docstring
For more examples, please check the examples
folder.
If you want to contribute, please contact me.
If you want an algorithm to be implemented, also drop me the paper (I will read if I have time).
The code is released under the MIT license. See LICENSE.txt
for details.
FAQs
Cython implementations of multiple root-finding methods.
We found that cy-root demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Research
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
Research
Security News
Attackers used a malicious npm package typosquatting a popular ESLint plugin to steal sensitive data, execute commands, and exploit developer systems.
Security News
The Ultralytics' PyPI Package was compromised four times in one weekend through GitHub Actions cache poisoning and failure to rotate previously compromised API tokens.