Security News
Research
Data Theft Repackaged: A Case Study in Malicious Wrapper Packages on npm
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
dataclasses-jsonschema
Advanced tools
.. image:: https://github.com/s-knibbs/dataclasses-jsonschema/workflows/Tox%20tests/badge.svg?branch=master :target: https://github.com/s-knibbs/dataclasses-jsonschema/actions
.. image:: https://badge.fury.io/py/dataclasses-jsonschema.svg :target: https://badge.fury.io/py/dataclasses-jsonschema
.. image:: https://img.shields.io/lgtm/grade/python/g/s-knibbs/dataclasses-jsonschema.svg?logo=lgtm&logoWidth=18 :target: https://lgtm.com/projects/g/s-knibbs/dataclasses-jsonschema/context:python :alt: Language grade: Python
Please Note: This project is in maintenance mode. I'm currently only making urgent bugfixes.
A library to generate JSON Schema from python 3.7 dataclasses. Python 3.6 is supported through the dataclasses backport <https://github.com/ericvsmith/dataclasses>
. Aims to be a more lightweight alternative to similar projects such as marshmallow <https://github.com/marshmallow-code/marshmallow>
& pydantic <https://github.com/samuelcolvin/pydantic>
_.
APISpec <https://github.com/marshmallow-code/apispec>
_ support. Example below_:.. code:: bash
~$ pip install dataclasses-jsonschema
For improved validation performance using fastjsonschema <https://github.com/horejsek/python-fastjsonschema>
_, install with:
.. code:: bash
~$ pip install dataclasses-jsonschema[fast-validation]
For improved uuid performance using fastuuid <https://pypi.org/project/fastuuid/>
_, install with:
.. code:: bash
~$ pip install dataclasses-jsonschema[fast-uuid]
For improved date and datetime parsing performance using ciso8601 <https://pypi.org/project/ciso8601/>
_, install with:
.. code:: bash
~$ pip install dataclasses-jsonschema[fast-dateparsing]
Beware ciso8601
doesn’t support the entirety of the ISO 8601 spec, only a popular subset.
.. code:: python
from dataclasses import dataclass
from dataclasses_jsonschema import JsonSchemaMixin
@dataclass
class Point(JsonSchemaMixin):
"A 2D point"
x: float
y: float
Schema Generation ^^^^^^^^^^^^^^^^^
.. code:: python
>>> pprint(Point.json_schema())
{
'description': 'A 2D point',
'type': 'object',
'properties': {
'x': {'format': 'float', 'type': 'number'},
'y': {'format': 'float', 'type': 'number'}
},
'required': ['x', 'y']
}
Data Serialisation ^^^^^^^^^^^^^^^^^^ .. code:: python
>>> Point(x=3.5, y=10.1).to_dict()
{'x': 3.5, 'y': 10.1}
Deserialisation ^^^^^^^^^^^^^^^
.. code:: python
>>> Point.from_dict({'x': 3.14, 'y': 1.5})
Point(x=3.14, y=1.5)
>>> Point.from_dict({'x': 3.14, y: 'wrong'})
dataclasses_jsonschema.ValidationError: 'wrong' is not of type 'number'
Generating multiple schemas ^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. code:: python
from dataclasses_jsonschema import JsonSchemaMixin, SchemaType
@dataclass
class Address(JsonSchemaMixin):
"""Postal Address"""
building: str
street: str
city: str
@dataclass
class Company(JsonSchemaMixin):
"""Company Details"""
name: str
address: Address
>>> pprint(JsonSchemaMixin.all_json_schemas(schema_type=SchemaType.SWAGGER_V3))
{'Address': {'description': 'Postal Address',
'properties': {'building': {'type': 'string'},
'city': {'type': 'string'},
'street': {'type': 'string'}},
'required': ['building', 'street', 'city'],
'type': 'object'},
'Company': {'description': 'Company Details',
'properties': {'address': {'$ref': '#/components/schemas/Address'},
'name': {'type': 'string'}},
'required': ['name', 'address'],
'type': 'object'}}
Custom validation using NewType <https://docs.python.org/3/library/typing.html#newtype>
_
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. code:: python
from dataclasses_jsonschema import JsonSchemaMixin, FieldEncoder
PhoneNumber = NewType('PhoneNumber', str)
class PhoneNumberField(FieldEncoder):
@property
def json_schema(self):
return {'type': 'string', 'pattern': r'^(\([0-9]{3}\))?[0-9]{3}-[0-9]{4}$'}
JsonSchemaMixin.register_field_encoders({PhoneNumber: PhoneNumberField()})
@dataclass
class Person(JsonSchemaMixin):
name: str
phone_number: PhoneNumber
For more examples see the tests <https://github.com/s-knibbs/dataclasses-jsonschema/blob/master/tests/conftest.py>
_
.. _below:
New in v2.5.0
OpenAPI & Swagger specs can be generated using the apispec plugin:
.. code:: python
from typing import Optional, List
from dataclasses import dataclass
from apispec import APISpec
from apispec_webframeworks.flask import FlaskPlugin
from flask import Flask, jsonify
import pytest
from dataclasses_jsonschema.apispec import DataclassesPlugin
from dataclasses_jsonschema import JsonSchemaMixin
# Create an APISpec
spec = APISpec(
title="Swagger Petstore",
version="1.0.0",
openapi_version="3.0.2",
plugins=[FlaskPlugin(), DataclassesPlugin()],
)
@dataclass
class Category(JsonSchemaMixin):
"""Pet category"""
name: str
id: Optional[int]
@dataclass
class Pet(JsonSchemaMixin):
"""A pet"""
categories: List[Category]
name: str
app = Flask(__name__)
@app.route("/random")
def random_pet():
"""A cute furry animal endpoint.
---
get:
description: Get a random pet
responses:
200:
content:
application/json:
schema: Pet
"""
pet = get_random_pet()
return jsonify(pet.to_dict())
# Dependant schemas (e.g. 'Category') are added automatically
spec.components.schema("Pet", schema=Pet)
with app.test_request_context():
spec.path(view=random_pet)
pydantic <https://github.com/samuelcolvin/pydantic>
_ and marshmallow <https://github.com/marshmallow-code/marshmallow>
_FAQs
JSON schema generation from dataclasses
We found that dataclasses-jsonschema demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Research
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
Research
Security News
Attackers used a malicious npm package typosquatting a popular ESLint plugin to steal sensitive data, execute commands, and exploit developer systems.
Security News
The Ultralytics' PyPI Package was compromised four times in one weekend through GitHub Actions cache poisoning and failure to rotate previously compromised API tokens.