Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

eda-report

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

eda-report

Automate exploratory data analysis and reporting.

  • 2.8.1
  • PyPI
  • Socket score

Maintainers
1

eda-report - Automated Exploratory Data Analysis

Binder PyPI version Python 3.9 - 3.11 Documentation Status codecov Code style: black

A Python program to help automate the exploratory data analysis and reporting process.

Input data is analyzed using pandas and SciPy. Graphs are plotted using matplotlib. The results are then nicely packaged as a Word (.docx) document using python-docx.

screencast of report document from iris dataset

Installation

You can install the package from PyPI using:

pip install eda-report

Basic Usage

1. Graphical User Interface

The eda-report command launches a graphical window to help select a csv/excel file to analyze:

eda-report

screencast of the gui

You'll be prompted to set a report title, group-by/target variable (optional), graph color and output filename; after which the contents of the input file are analyzed, and the results saved in a Word (.docx) document.

NOTE: For help with Tk - related issues, consider visiting TkDocs.

2. Command Line Interface

$ eda-report -i iris.csv -o iris-report.docx
Analyze variables:  100%|███████████████████████████████████| 5/5
Plot variables:     100%|███████████████████████████████████| 5/5
Bivariate analysis: 100%|███████████████████████████████████| 6/6 pairs.
[INFO 02:12:22.146] Done. Results saved as 'iris-report.docx'
$ eda-report -h
usage: eda-report [-h] [-i INFILE] [-o OUTFILE] [-t TITLE] [-c COLOR]
                  [-g GROUPBY]

Automatically analyze data and generate reports. A graphical user interface
will be launched if none of the optional arguments is specified.

optional arguments:
  -h, --help            show this help message and exit
  -i INFILE, --infile INFILE
                        A .csv or .xlsx file to analyze.
  -o OUTFILE, --outfile OUTFILE
                        The output name for analysis results (default: eda-
                        report.docx)
  -t TITLE, --title TITLE
                        The top level heading for the report (default:
                        Exploratory Data Analysis Report)
  -c COLOR, --color COLOR
                        The color to apply to graphs (default: cyan)
  -g GROUPBY, -T GROUPBY, --groupby GROUPBY, --target GROUPBY
                        The variable to use for grouping plotted values. An
                        integer value is treated as a column index, whereas a
                        string is treated as a column label.

3. Interpreter Session

>>> eda_report.summarize(iris_data)

                  Summary Statistics for Numeric features (4)
                  -------------------------------------------
                count     avg  stddev  min  25%   50%  75%  max  skewness  kurtosis
  sepal_length    150  5.8433  0.8281  4.3  5.1  5.80  6.4  7.9    0.3149   -0.5521
  sepal_width     150  3.0573  0.4359  2.0  2.8  3.00  3.3  4.4    0.3190    0.2282
  petal_length    150  3.7580  1.7653  1.0  1.6  4.35  5.1  6.9   -0.2749   -1.4021
  petal_width     150  1.1993  0.7622  0.1  0.3  1.30  1.8  2.5   -0.1030   -1.3406

                Summary Statistics for Categorical features (1)
                -----------------------------------------------
                    count unique     top freq relative freq
            species   150      3  setosa   50        33.33%


                        Pearson's Correlation (Top 20)
                        ------------------------------
      petal_length & petal_width -> very strong positive correlation (0.96)
     sepal_length & petal_length -> very strong positive correlation (0.87)
      sepal_length & petal_width -> very strong positive correlation (0.82)
      sepal_width & petal_length -> moderate negative correlation (-0.43)
       sepal_width & petal_width -> weak negative correlation (-0.37)
      sepal_length & sepal_width -> very weak negative correlation (-0.12)

Check out the documentation for more features and details.

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc