FasterViT: Fast Vision Transformers with Hierarchical Attention
FasterViT achieves a new SOTA Pareto-front in
terms of accuracy vs. image throughput without extra training data !
Note: Please use the latest NVIDIA TensorRT release to enjoy the benefits of optimized FasterViT ops.
Quick Start
We can import pre-trained FasterViT models with 1 line of code. First, FasterViT can be simply installed by:
pip install fastervit
A pretrained FasterViT model with default hyper-parameters can be created as in the following:
>>> from fastervit import create_model
>>> model = create_model('faster_vit_0_224',
pretrained=True,
model_path="/tmp/faster_vit_0.pth.tar")
model_path
is used to set the directory to download the model.
We can also simply test the model by passing a dummy input image. The output is the logits:
>>> import torch
>>> image = torch.rand(1, 3, 224, 224)
>>> output = model(image)
We can also use the any-resolution FasterViT model to accommodate arbitrary image resolutions. In the following, we define an any-resolution FasterViT-0
model with input resolution of 576 x 960, window sizes of 12 and 6 in 3rd and 4th stages, carrier token size of 2 and embedding dimension of
64:
>>> from fastervit import create_model
>>> model = create_model('faster_vit_0_any_res',
resolution=[576, 960],
window_size=[7, 7, 12, 6],
ct_size=2,
dim=64,
pretrained=True)
Note that the above model is intiliazed from the original ImageNet pre-trained FasterViT with original resolution of 224 x 224. As a result, missing keys and mis-matches could be expected since we are addign new layers (e.g. addition of new carrier tokens, etc.)
We can simply test the model by passing a dummy input image. The output is the logits:
>>> import torch
>>> image = torch.rand(1, 3, 576, 960)
>>> output = model(image)
Results + Pretrained Models
ImageNet-1K
FasterViT ImageNet-1K Pretrained Models
Name | Acc@1(%) | Acc@5(%) | Throughput(Img/Sec) | Resolution | #Params(M) | FLOPs(G) | Download |
---|
FasterViT-0 | 82.1 | 95.9 | 5802 | 224x224 | 31.4 | 3.3 | model |
FasterViT-1 | 83.2 | 96.5 | 4188 | 224x224 | 53.4 | 5.3 | model |
FasterViT-2 | 84.2 | 96.8 | 3161 | 224x224 | 75.9 | 8.7 | model |
FasterViT-3 | 84.9 | 97.2 | 1780 | 224x224 | 159.5 | 18.2 | model |
FasterViT-4 | 85.4 | 97.3 | 849 | 224x224 | 424.6 | 36.6 | model |
FasterViT-5 | 85.6 | 97.4 | 449 | 224x224 | 975.5 | 113.0 | model |
FasterViT-6 | 85.8 | 97.4 | 352 | 224x224 | 1360.0 | 142.0 | model |
ImageNet-21K
FasterViT ImageNet-21K Pretrained Models (ImageNet-1K Fine-tuned)
Name | Acc@1(%) | Acc@5(%) | Resolution | #Params(M) | FLOPs(G) | Download |
---|
FasterViT-4-21K-224 | 86.6 | 97.8 | 224x224 | 271.9 | 40.8 | model |
FasterViT-4-21K-384 | 87.6 | 98.3 | 384x384 | 271.9 | 120.1 | model |
FasterViT-4-21K-512 | 87.8 | 98.4 | 512x512 | 271.9 | 213.5 | model |
FasterViT-4-21K-768 | 87.9 | 98.5 | 768x768 | 271.9 | 480.4 | model |
Robustness (ImageNet-A - ImageNet-R - ImageNet-V2)
All models use crop_pct=0.875
. Results are obtained by running inference on ImageNet-1K pretrained models without finetuning.
Name | A-Acc@1(%) | A-Acc@5(%) | R-Acc@1(%) | R-Acc@5(%) | V2-Acc@1(%) | V2-Acc@5(%) |
---|
FasterViT-0 | 23.9 | 57.6 | 45.9 | 60.4 | 70.9 | 90.0 |
FasterViT-1 | 31.2 | 63.3 | 47.5 | 61.9 | 72.6 | 91.0 |
FasterViT-2 | 38.2 | 68.9 | 49.6 | 63.4 | 73.7 | 91.6 |
FasterViT-3 | 44.2 | 73.0 | 51.9 | 65.6 | 75.0 | 92.2 |
FasterViT-4 | 49.0 | 75.4 | 56.0 | 69.6 | 75.7 | 92.7 |
FasterViT-5 | 52.7 | 77.6 | 56.9 | 70.0 | 76.0 | 93.0 |
FasterViT-6 | 53.7 | 78.4 | 57.1 | 70.1 | 76.1 | 93.0 |
A, R and V2 denote ImageNet-A, ImageNet-R and ImageNet-V2 respectively.
Citation
Please consider citing FasterViT if this repository is useful for your work.
@article{hatamizadeh2023fastervit,
title={FasterViT: Fast Vision Transformers with Hierarchical Attention},
author={Hatamizadeh, Ali and Heinrich, Greg and Yin, Hongxu and Tao, Andrew and Alvarez, Jose M and Kautz, Jan and Molchanov, Pavlo},
journal={arXiv preprint arXiv:2306.06189},
year={2023}
}
Licenses
Copyright © 2023, NVIDIA Corporation. All rights reserved.
This work is made available under the NVIDIA Source Code License-NC. Click here to view a copy of this license.
For license information regarding the timm repository, please refer to its repository.
For license information regarding the ImageNet dataset, please see the ImageNet official website.
Acknowledgement
This repository is built on top of the timm repository. We thank Ross Wrightman for creating and maintaining this high-quality library.