Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

fastpace

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

fastpace

FaSTPACE: A Fast and Scalable Tool for Peptide Alignment and Consensus Extraction

  • 1.0.1
  • PyPI
  • Socket score

Maintainers
1

FaSTPACE: A Fast and Scalable Tool for Peptide Alignment and Consensus Extraction

FaSTPACE (Fast and Scalable Tool for Peptide Alignment and Consensus Extraction) is a Python package implemented in C++ programming language.

Table of contents

  • Description
  • Usage
  • Development
  • License
  • Reference

Description

FaSTPACE algorithm

The core of the algorithm produces a refined global similarity matrix from which these outputs are produced. A global similarity matrix is a probabilistic representation of the similarity of the peptide to all other peptides in the dataset. The method consists of three steps: initiation, refinement and post-processing of the global similarity matrix.

Usage

Install the package:

pip install fastpace

Import functions:

from fastpace import run_motif_discovery, rerun_motif_discovery
run_motif_discovery(peptides, weights=None, refine=1, normalization_factor=-1)

Calculate per residue similarity scores, align peptides, and extract putative motifs.

Parameters:

  • peptides (list): List of strings of standard sequence letters representing peptides in the dataset. It should contain 2 or more peptides. No sequence with less than 2 letters or longer than 32 characters is allowed.
  • weights (list, optional, default=None): List of positive numbers representing weights. The number of weights must be equal to the number of peptides. If not provided, each peptide is assigned a weight of 1.
  • refine (int, optional, default=1): Flag with 0 or 1. (0 means return the results after the initiation step, 1 means doing the refinement step)
  • normalization_factor (float, optional, default=-1): The dataset size is corrected to be equal to this number in order to compare different datasets with different sizes. It must be equal to or greater than 1. By default, -1 means to use the dataset size with no normalization.

Returns:

  • Dictionary: The dictionary object returned contains information about the discovered motif, alignment results, and similarity scores for each peptide. Below is a breakdown of the key elements in the output:
    .
    ├── Refinement Information:
    │   └── refinement_iterations: The number of refinement iterations performed.
    ├── Consensus Motif Information:
    │   ├── best_motif: The best consensus motif represented as a regular expression.
    │   ├── best_motif_p_val: P-value associated with the best consensus motif.
    │   ├── best_motif_significance: Significance level of the best consensus motif.
    │   ├── best_motif_num_matches: Number of matches found for the best consensus motif.
    │   └── best_motif_coverage: Coverage percentage of the best consensus motif.
    ├── Alignment Information: 
    │   ├── template: The template sequence used for alignment.
    │   └── aligned_sequences: A dictionary mapping each input sequence to its aligned counterpart.
    └── Peptide-specific Information:
        For each peptide in the dataset, the following information is provided:
        ├──  similarity_matrix: A matrix of peptide's global similarity scores.
        ├──  similarity_motif: The motif represented as a regular expression extracted from the peptide's global similarity matrix.
        ├──  similarity_p_val: P-value associated with the similarity motif.
        ├──  similarity_significance: Significance level of the similarity motif.
        ├──  similarity_num_matches: Number of matches found for the similarity motif.
        ├──  similarity_coverage: Coverage percentage of the similarity motif.
        ├──  similarity_score: Cumulative similarity score for the peptide.
        ├──  matched_motif: The motif with the best p-value that matches the peptide.
        ├──  matched_p_val: P-value associated with the matched motif.
        ├──  matched_significance: Significance level of the matched motif.
        ├──  matched_num_matches: Number of matches found for the matched motif.
        ├──  matched_coverage: Coverage percentage of the matched motif.
        └──  alignment_score: Alignment score for the peptide on the template sequence.

Example:

peptides = ['TSPDGGTTFEHLWSSL', 'SPEVFQHIWDFLEQPI', 'CPVDPFEAQWAALENK', 'EPPLSQETFSDLWKLL', 'APELDPFEAQWAALEG']
run_motif_discovery(peptides, refine=0)

Output:

{
  "refinement_iterations": 0,
  "consensus": {
    "best_motif": ".*F...W..L.*",
    "best_motif_p_val": 4.030701364259203e-12,
    "best_motif_significance": 6.449063505442609e-09,
    "best_motif_num_matches": 5,
    "best_motif_coverage": 1.0
  },
  "alignment": {
    "template": "TSPDGGTTFEHLWSSL",
    "aligned_sequences": {
      "TSPDGGTTFEHLWSSL": "TSPDGGTTFEHLWSSL----",
      "SPEVFQHIWDFLEQPI": "----SPEVFQHIWDFLEQPI",
      "CPVDPFEAQWAALENK": "---CPVDPFEAQWAALENK-",
      "EPPLSQETFSDLWKLL": "EPPLSQETFSDLWKLL----",
      "APELDPFEAQWAALEG": "--APELDPFEAQWAALEG--"
    }
  },
  "peptides": {
    "TSPDGGTTFEHLWSSL": {
      "similarity_matrix": {
        // ...
      },
      // ...
    },
    "SPEVFQHIWDFLEQPI": {
      // ...
    },
    // ...
  }
}

Example with weighting:

peptides = ['TSPDGGTTFEHLWSSL', 'SPEVFQHIWDFLEQPI', 'CPVDPFEAQWAALENK', 'EPPLSQETFSDLWKLL', 'APELDPFEAQWAALEG']
weights = [1, 2, 4, 1.5, 0.1]
run_motif_discovery(peptides, weights)

Output:

{
   "refinement_iterations":30,
   "consensus":{
      "best_motif":".*F...W..L.*",
      "best_motif_p_val":4.030701364259203e-12,
      "best_motif_significance":2.8327562517915794e-09,
      "best_motif_num_matches":5,
      "best_motif_coverage":1.0
   },
   "alignment":{
      "template":"APELDPFEAQWAALEG",
      "aligned_sequences":{
         "TSPDGGTTFEHLWSSL":"TSPDGGTTFEHLWSSL----",
         "SPEVFQHIWDFLEQPI":"----SPEVFQHIWDFLEQPI",
         "CPVDPFEAQWAALENK":"---CPVDPFEAQWAALENK-",
         "EPPLSQETFSDLWKLL":"EPPLSQETFSDLWKLL----",
         "APELDPFEAQWAALEG":"--APELDPFEAQWAALEG--"
      }
   },
  "peptides": {
    "TSPDGGTTFEHLWSSL": {
      "similarity_matrix": {
        // ...
      },
      // ...
    },
    "SPEVFQHIWDFLEQPI": {
      // ...
    },
    // ...
  }
}
rerun_motif_discovery(original_peptides, masked_peptides, weights=None)

Calculate per residue similarity scores and extract putative motifs after masking previously extracted motifs.

Parameters:

  • original_peptides (list): List of the original peptides before masking.
  • masked_peptides (list): List of the masked peptides. The masked positions should be substituted with the character X. The number of masked peptides must be equal to the number of original peptides.
  • weights (list, optional, default=None): List of positive weights.

Returns:

  • Dictionary: The dictionary object returned contains information about the discovered motif, alignment results, and similarity scores for each peptide. The output has the same format as the previous function.

Example:

peptides = ['TSPDGGTTFEHLWSSL', 'SPEVFQHIWDFLEQPI', 'CPVDPFEAQWAALENK', 'EPPLSQETFSDLWKLL', 'APELDPFEAQWAALEG']
masked_peptides = ['TSPDGGTTXXXXXSSL', 'SPEVXXXXXDFLEQPI', 'CPVDPXXXXXAALENK', 'EPPLSQETXXXXXKLL', 'APELDPXXXXXAALEG']
rerun_motif_discovery(peptides, masked_peptides)

Output:

{
  "refinement_iterations": 23,
  "consensus": {
    "best_motif": ".*D........LE.*",
    "best_motif_p_val": 0.00033767412104890706,
    "best_motif_significance": 0.41746722746831066,
    "best_motif_num_matches": 2,
    "best_motif_coverage": 0.4
  },
  "alignment": {
    "template": "CPVDPXXXXXAALENK",
    "aligned_sequences": {
      "TSPDGGTTXXXXXSSL": "TSPDGGTTXXXXXSSL----",
      "SPEVXXXXXDFLEQPI": "----SPEVXXXXXDFLEQPI",
      "CPVDPXXXXXAALENK": "---CPVDPXXXXXAALENK-",
      "EPPLSQETXXXXXKLL": "EPPLSQETXXXXXKLL----",
      "APELDPXXXXXAALEG": "--APELDPXXXXXAALEG--"
    }
  },
  "peptides": {
    "TSPDGGTTXXXXXSSL": {
      "similarity_matrix": {
        // ...
      },
      // ...
    },
    "SPEVXXXXXDFLEQPI": {
      // ...
    },
    "CPVDPXXXXXAALENK": {
      // ...
    },
    "EPPLSQETXXXXXKLL": {
      // ...
    },
    "APELDPXXXXXAALEG": {
      // ...
    }
  }
}

Fasta File Processing Script

A script is designed to process fasta files, align peptides, perform motif discovery, and generate sequence logos. It utilizes the fastpace module for motif discovery and the logomaker library for creating sequence logos.

Prerequisites
  • Before using this script, ensure that you have the required Python libraries installed. You can install them using the following command:
pip install fastpace pandas matplotlib seaborn logomaker
  • Clone the repository (to download the script):
git clone https://github.com/hkotb/fastpace.git
cd fastpace/test/
Run the script
python fastpace_cmd.py --input_file input.fasta --output_file output.fasta [--draw_logo] [--sequence SEQUENCE] [--num_reruns NUM_RERUNS] [--refine REFINE]
Command-line Arguments
  • --input_file: The path to the input fasta file. (Required)
  • --output_file: The path to the output fasta file. (Required)
  • --draw_logo: Draw sequence logo of the best peptide or the peptide passed by --sequence. (Optional)
  • --sequence: Draw sequence logo of this peptide. (Optional)
  • --num_reruns: Number of times to rerun the algorithm before returning the results. (Default: 1)
  • --refine: Flag to run the refinement. (Default: 1)
Examples

Basic Usage

python fastpace_cmd.py --input_file input.fasta --output_file output.fasta

Drawing Sequence Logo

python fastpace_cmd.py --input_file input.fasta --output_file output.fasta --draw_logo

Drawing Sequence Logo for a Specific Peptide

python fastpace_cmd.py --input_file input.fasta --output_file output.fasta --draw_logo --sequence GATCGATCG

Running Multiple Reruns

python fastpace_cmd.py --input_file input.fasta --output_file output.fasta --num_reruns 3

Running without Refinement

python fastpace_cmd.py --input_file input.fasta --output_file output.fasta --refine 0
Output

The script generates an output fasta file of the aligned peptides, a JSON file containing the motif discovery results, and a PNG file containing the sequence logo (if --draw_logo is specified).

  • Output Fasta File: output.fasta
  • JSON Result File: output.json
  • Sequence Logo File: output.png

Development

We recommend that you clone the repository and install it as a development package with:

python setup.py develop

To generate a distribution archive from your machine:

python -m build

To distribute binary Python extensions as wheels on Linux:

docker pull quay.io/pypa/manylinux2014_x86_64
docker run --rm -e PLAT=manylinux2014_x86_64 -v `pwd`:/io quay.io/pypa/manylinux2014_x86_64  /io/build-wheels.sh

License

This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree.

Reference

If you find the pipeline useful in your research, we ask that you cite our paper:

Coming soon.

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc