Security News
Research
Data Theft Repackaged: A Case Study in Malicious Wrapper Packages on npm
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
A toolkit for developing OpenAI Gym environments simulated with Ignition Gazebo.
gym-ignition is a framework to create reproducible robotics environments for reinforcement learning research.
It is based on the ScenarIO project which provides the low-level APIs to interface with the Ignition Gazebo simulator.
By default, RL environments share a lot of boilerplate code, e.g. for initializing the simulator or structuring the classes
to expose the gym.Env
interface.
Gym-ignition provides the Task
and Runtime
abstractions that help you focusing on the development of the decision-making logic rather than engineering.
It includes randomizers to simplify the implementation of domain randomization
of models, physics, and tasks.
Gym-ignition also provides powerful dynamics algorithms compatible with both fixed-base and floating-based robots by
exploiting robotology/idyntree and exposing
high-level functionalities.
Gym-ignition does not provide out-of-the-box environments ready to be used.
Rather, its aim is simplifying and streamlining their development.
Nonetheless, for illustrative purpose, it includes canonical examples in the
gym_ignition_environments
package.
Visit the website for more information about the project.
pip install gym-ignition
, preferably in a virtual environment.You can visit our community forum hosted in GitHub Discussions. Even without coding skills, replying user's questions is a great way of contributing. If you use gym-ignition in your application and want to show it off, visit the Show and tell section! You can advertise there your environments created with gym-ignition.
Pull requests are welcome.
For major changes, please open a discussion first to propose what you would like to change.
@INPROCEEDINGS{ferigo2020gymignition,
title={Gym-Ignition: Reproducible Robotic Simulations for Reinforcement Learning},
author={D. {Ferigo} and S. {Traversaro} and G. {Metta} and D. {Pucci}},
booktitle={2020 IEEE/SICE International Symposium on System Integration (SII)},
year={2020},
pages={885-890},
doi={10.1109/SII46433.2020.9025951}
}
LGPL v2.1 or any later version.
Disclaimer: Gym-ignition is an independent project and is not related by any means to OpenAI and Open Robotics.
FAQs
A toolkit for developing OpenAI Gym environments simulated with Ignition Gazebo.
We found that gym-ignition demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Research
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
Research
Security News
Attackers used a malicious npm package typosquatting a popular ESLint plugin to steal sensitive data, execute commands, and exploit developer systems.
Security News
The Ultralytics' PyPI Package was compromised four times in one weekend through GitHub Actions cache poisoning and failure to rotate previously compromised API tokens.