healmatcher
healmatcher
is a simple but fast probabilistic data matching package developed by NYULH HEAL Lab.- The package is best optimized for matching healthcare database (e.g. EHR) as it has designed to link Medicaid and Client Database System data.
Splink package
is extensively being used to run core linkage processes.- Currently, the model supports 4 variables (
sex
, date of birth
, last 4 digits of ssn
, and first 2 letters of last name
) to run the linkage process.
How to install
pip install healmatcher
How to use (example)
!pip install healmatcher
from healmatcher import hm
testa = pd.DataFrame({
'sex':[1,2,1,2,1,2,1,2,1,2],
'dob':['2012-1-1','2011-12-1','1999-1-1','1998-11-1','2012-11-1','1984-1-1','1982-1-1','1975-1-1','1967-1-1','1954-1-1'],
'ssn':[1111,2222,3333,4444,5555,6666,7777,8888,9999,1010],
'ln':["as",'ss','zz','rr','ww','wa','tr','tt','hh','gq'],
'PROVIDER_NUMBER':[2,1,1,1,1,1,1,1,2,1]
})
testb = pd.DataFrame({
'sex':[2,2,1,1,1,2,1,2,1,1],
'dob':['2012-1-1','2001-12-1','1999-1-1','1998-11-1','2012-11-1','1984-1-1','1982-1-1','1975-1-1','1967-1-1','1954-1-1'],
'ssn':[1111,2222,3333,4444,5555,6666,7777,8888,9999,1010],
'ln':["as",'ls','zz','rr','wb','wa','tr','tt','ha','gq'],
'PROVIDER_NUMBER':[2,1,1,1,1,1,1,1,2,1]
hm(
df_a = testa,
df_b = testb,
col_a=['sex','dob','ssn','ln'],
col_b=['sex','dob','ssn','ln'],
match_prob_threshold = 0.001,
iteration = 20,
model2 = True,
blocking_rule_for_training_input = 'PROVIDER_NUMBER',
onetoone = True,
match_summary = True
)
Updates
use_save_model=True
: Load pre-trained model to run matchingsave_model_path = PATH
: add path to load a model (json format)export_model=True
: argument to save current modelexport_model_path=PATH
: add path to save current model
Follow up
- Please visit our repo if you have any questions.
Webpage