Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

invrs-gym

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

invrs-gym

A collection of inverse design challenges

  • 1.4.3
  • PyPI
  • Socket score

Maintainers
1

invrs-gym

v1.4.3

Overview

The invrs_gym package is an open-source gym containing a diverse set of photonic design challenges, which are relevant for a wide range of applications such as AR/VR, optical networking, LIDAR, and others.

Each of the challenges consists of a high-dimensional problem in which a physical structure (the photonic device) is optimized. The structure includes typically >10,000 degrees of freedom (DoF), generally including one or more arrays representing the structure or patterning of a layer, and may also include scalar variables representing e.g. layer thickness. In general, the DoF must satisfy certain constraints to be physical: thicknesses must be positive, and layer patterns must be manufacturable---they must not include features that are too small, or too closely spaced.

In general, we seek optimization techniques that reliably produce manufacturable, high-quality solutions and require reasonable compute resources. Among the techniques that could be applied are topology optimization, inverse design, and AI-guided design.

invrs_gym is intended to facilitate research on such methods within the jax ecosystem. It includes several challenges that have been used in previous works, so that researchers may directly compare their results to those of the literature. While some challenges are test problems (e.g. where the structure is two-dimensional, which is unphysical but allows fast simulation), others are actual problems that are relevant e.g. for quantum computing or 3D sensing.

Key concepts

The key types of the challenge are the Challenge and Component objects.

The Component represents the physical structure to be optimized, and has some intended excitation or operating condition (e.g. illumination with a particular wavelength from a particular direction). The Component includes methods to obtain initial parameters, and to compute the response of a component to the excitation.

Each Challenge has a Component as an attribute, and also has a target that can be used to determine whether particular parameters "solve" the challenge. The Challenge also provides functions to compute a scalar loss for use with gradient-based optimization, and additional metrics.

Example

# Select the challenge.
challenge = invrs_gym.challenges.ceviche_lightweight_waveguide_bend()

# Define loss function, which also returns auxilliary quantities.
def loss_fn(params):
    response, aux = challenge.component.response(params)
    loss = challenge.loss(response)
    eval_metric = challenge.eval_metric(response)
    metrics = challenge.metrics(response, params, aux)
    return loss, (response, eval_metric, metrics, aux)

value_and_grad_fn = jax.value_and_grad(loss_fn, has_aux=True)

# Select an optimizer.
opt = invrs_opt.density_lbfgsb(beta=4)

# Generate initial parameters, and use these to initialize the optimizer state.
params = challenge.component.init(jax.random.PRNGKey(0))
state = opt.init(params)

# Carry out the optimization.
for i in range(steps):
    params = opt.params(state)
    (value, (response, eval_metric, metrics, aux)), grad = value_and_grad_fn(params)
    state = opt.update(grad=grad, value=value, params=params, state=state)

With some plotting, this code will produce the following waveguide bend:

Animated evolution of waveguide bend design

Challenges

The current list of challenges is below. Check out the notebooks for ready-to-go examples of each.

Install

pip install invrs_gym

Testing

Some tests are marked as slow and are skipped by default. To run these manually, use

pytest --runslow

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc