Security News
Research
Data Theft Repackaged: A Case Study in Malicious Wrapper Packages on npm
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
JollyJack operates on top of pyarrow, making it an essential requirement for both building and using JollyJack. While our source package is compatible with recent versions of pyarrow, the binary distribution package specifically requires the latest major version of pyarrow.
pip install jollyjack
import jollyjack as jj
import pyarrow.parquet as pq
import pyarrow as pa
import numpy as np
from pyarrow import fs
chunk_size = 3
n_row_groups = 2
n_columns = 5
n_rows = n_row_groups * chunk_size
path = "my.parquet"
data = np.random.rand(n_rows, n_columns).astype(np.float32)
pa_arrays = [pa.array(data[:, i]) for i in range(n_columns)]
schema = pa.schema([(f'column_{i}', pa.float32()) for i in range(n_columns)])
table = pa.Table.from_arrays(pa_arrays, schema=schema)
pq.write_table(table, path, row_group_size=chunk_size, use_dictionary=False, write_statistics=True, store_schema=False, write_page_index=True)
# Create an array of zeros
np_array = np.zeros((n_rows, n_columns), dtype='f', order='F')
pr = pq.ParquetReader()
pr.open(path)
row_begin = 0
row_end = 0
for rg in range(pr.metadata.num_row_groups):
row_begin = row_end
row_end = row_begin + pr.metadata.row_group(rg).num_rows
# To define which subset of the numpy array we want read into,
# we need to create a view which shares underlying memory with the target numpy array
subset_view = np_array[row_begin:row_end, :]
jj.read_into_numpy (source = path
, metadata = pr.metadata
, np_array = subset_view
, row_group_indices = [rg]
, column_indices = range(pr.metadata.num_columns))
# Alternatively
with fs.LocalFileSystem().open_input_file(path) as f:
jj.read_into_numpy (source = f
, metadata = None
, np_array = np_array
, row_group_indices = range(pr.metadata.num_row_groups)
, column_indices = range(pr.metadata.num_columns))
with fs.LocalFileSystem().open_input_file(path) as f:
jj.read_into_numpy (source = f
, metadata = None
, np_array = np_array
, row_group_indices = range(pr.metadata.num_row_groups)
, column_indices = {i:pr.metadata.num_columns - i - 1 for i in range(pr.metadata.num_columns)})
with fs.LocalFileSystem().open_input_file(path) as f:
jj.read_into_numpy (source = f
, metadata = None
, np_array = np_array
, row_group_indices = range(pr.metadata.num_row_groups)
, column_indices = ((3, 0), (3, 1)))
import torch
# Create a tesnsor and transpose it to get Fortran-style order
tensor = torch.zeros(n_columns, n_rows, dtype = torch.float32).transpose(0, 1)
pr = pq.ParquetReader()
pr.open(path)
jj.read_into_torch (source = path
, metadata = pr.metadata
, tensor = tensor
, row_group_indices = range(pr.metadata.num_row_groups)
, column_indices = range(pr.metadata.num_columns)
, pre_buffer = True
, use_threads = True)
print(tensor)
n_threads | use_threads | pre_buffer | dtype | compression | PyArrow | JollyJack |
---|---|---|---|---|---|---|
1 | False | False | float | None | 6.79s | 3.55s |
1 | True | False | float | None | 5.17s | 2.32s |
1 | False | True | float | None | 5.54s | 2.76s |
1 | True | True | float | None | 3.98s | 2.66s |
2 | False | False | float | None | 4.63s | 2.33s |
2 | True | False | float | None | 3.89s | 2.36s |
2 | False | True | float | None | 4.19s | 2.61s |
2 | True | True | float | None | 3.36s | 2.39s |
1 | False | False | float | snappy | 7.00s | 3.56s |
1 | True | False | float | snappy | 5.21s | 2.23s |
1 | False | True | float | snappy | 5.22s | 3.30s |
1 | True | True | float | snappy | 3.73s | 2.84s |
2 | False | False | float | snappy | 4.43s | 2.49s |
2 | True | False | float | snappy | 3.40s | 2.42s |
2 | False | True | float | snappy | 4.07s | 2.63s |
2 | True | True | float | snappy | 3.14s | 2.55s |
1 | False | False | halffloat | None | 7.21s | 1.23s |
1 | True | False | halffloat | None | 3.53s | 0.71s |
1 | False | True | halffloat | None | 7.43s | 1.96s |
1 | True | True | halffloat | None | 4.04s | 1.52s |
2 | False | False | halffloat | None | 3.84s | 0.64s |
2 | True | False | halffloat | None | 3.11s | 0.57s |
2 | False | True | halffloat | None | 4.07s | 1.17s |
2 | True | True | halffloat | None | 3.39s | 1.14s |
FAQs
Read parquet data directly into numpy array
We found that jollyjack demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Research
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
Research
Security News
Attackers used a malicious npm package typosquatting a popular ESLint plugin to steal sensitive data, execute commands, and exploit developer systems.
Security News
The Ultralytics' PyPI Package was compromised four times in one weekend through GitHub Actions cache poisoning and failure to rotate previously compromised API tokens.