Kindle - Making a PyTorch model easier than ever!
Documentation |
---|
|
Kindle is an easy model build package for PyTorch. Building a deep learning model became so simple that almost all model can be made by copy and paste from other existing model codes. So why code? when we can simply build a model with yaml markup file.
Kindle builds a model with yaml file which its method is inspired from YOLOv5.
Contents
Installation
Install with pip
PyTorch is required prior to install. Please visit PyTorch installation guide to install.
You can install kindle
by pip.
$ pip install kindle
Install kindle
for PyTorch under 1.7.1 (not tested)
pip install kindle --no-deps
pip install tqdm ptflops timm tabulate einops
Install from source
Please visit Install from source wiki page
For contributors
Please visit For contributors wiki page
Usage
Build a model
- Make model yaml file
input_size: [32, 32]
input_channel: 3
depth_multiple: 1.0
width_multiple: 1.0
backbone:
[
[-1, 1, Conv, [6, 5, 1, 0], {activation: LeakyReLU}],
[-1, 1, MaxPool, [2]],
[-1, 1, nn.Conv2d, [16, 5, 1, 2], {bias: False}],
[-1, 1, nn.BatchNorm2d, []],
[-1, 1, nn.ReLU, []],
[-1, 1, MaxPool, [2]],
[-1, 1, Flatten, []],
[-1, 1, Linear, [120, ReLU]],
[-1, 1, Linear, [84, ReLU]],
]
head:
[
[-1, 1, Linear, [10]]
]
- Build the model with kindle
from kindle import Model
model = Model("model.yaml"), verbose=True)
idx | from | n | params | module | arguments | in_channel | out_channel | in shape | out shape |
----------------------------------------------------------------------------------------------------------------------------------------------------------
0 | -1 | 1 | 616 | Conv | [6, 5, 1, 0], activation: LeakyReLU | 3 | 8 | [3, 32, 32] | [8, 32, 32] |
1 | -1 | 1 | 0 | MaxPool | [2] | 8 | 8 | [8 32 32] | [8, 16, 16] |
2 | -1 | 1 | 3,200 | nn.Conv2d | [16, 5, 1, 2], bias: False | 8 | 16 | [8 16 16] | [16, 16, 16] |
3 | -1 | 1 | 32 | nn.BatchNorm2d | [] | 16 | 16 | [16 16 16] | [16, 16, 16] |
4 | -1 | 1 | 0 | nn.ReLU | [] | 16 | 16 | [16 16 16] | [16, 16, 16] |
5 | -1 | 1 | 0 | MaxPool | [2] | 16 | 16 | [16 16 16] | [16, 8, 8] |
6 | -1 | 1 | 0 | Flatten | [] | -1 | 1024 | [16 8 8] | [1024] |
7 | -1 | 1 | 123,000 | Linear | [120, 'ReLU'] | 1024 | 120 | [1024] | [120] |
8 | -1 | 1 | 10,164 | Linear | [84, 'ReLU'] | 120 | 84 | [120] | [84] |
9 | -1 | 1 | 850 | Linear | [10] | 84 | 10 | [84] | [10] |
Model Summary: 20 layers, 137,862 parameters, 137,862 gradients
AutoML with Kindle
Supported modules
Module | Components | Arguments |
---|
Conv | Conv -> BatchNorm -> Activation | [out_channels, kernel_size, stride, padding, groups, activation] |
DWConv | DWConv -> BatchNorm -> Activation | [out_channels, kernel_size, stride, padding, activation] |
Focus | Reshape x -> Conv -> Concat | [out_channels, kernel_size, stride, padding, activation] |
Bottleneck | Expansion ConvBNAct -> ConvBNAct | [out_channels, shortcut, groups, expansion, activation] |
BottleneckCSP | CSP Bottleneck | [out_channels, shortcut, groups, expansion, activation] |
C3 | CSP Bottleneck with 3 Conv | [out_channels, shortcut, groups, expansion, activation] |
MV2Block | MobileNet v2 block | [out_channels, stride, expand_ratio, activation] |
AvgPool | Average pooling | [kernel_size, stride, padding] |
MaxPool | Max pooling | [kernel_size, stride, padding] |
GlobalAvgPool | Global Average Pooling | [] |
SPP | Spatial Pyramid Pooling | [out_channels, [kernel_size1, kernel_size2, ...], activation] |
SPPF | Spatial Pyramid Pooling - Fast | [out_channels, kernel_size, activation] |
Flatten | Flatten | [] |
Concat | Concatenation | [dimension] |
Linear | Linear | [out_channels, activation] |
Add | Add | [] |
UpSample | UpSample | [] |
Identity | Identity | [] |
YamlModule | Custom module from yaml file | ['yaml/file/path', arg0, arg1, ...] |
nn.{module_name} | PyTorch torch.nn.* module | Please refer to https://pytorch.org/docs/stable/nn.html |
Pretrained | timm.create_model | [model_name, use_feature_maps, features_only, pretrained] |
PreTrainedFeatureMap | Bypass feature layer map from Pretrained | [feature_idx] |
YOLOHead | YOLOv5 head module | [n_classes, anchors, out_xyxy] |
MobileViTBlock | MobileVit Block(experimental) | [conv_channels, mlp_channels, depth, kernel_size, patch_size, dropout, activation] |
Custom module support
Custom module with yaml
Custom module from source code
Pretrained model support
Model profiler
Test Time Augmentation
Recent changes
Version | Description | Date |
---|
0.4.16 | Fix decomposed conv fuse and add kindle version variable. | 2021. 10. 25 |
0.4.14 | Add MobileViTBlock module | 2021. 10. 18 |
0.4.12 | Add MV2Block module | 2021. 10. 14 |
0.4.11 | Add SPPF module in yolov5 v6.0 | 2021. 10. 13 |
0.4.10 | Fix ONNX export padding issue. | 2021. 10. 13 |
0.4.6 | Add YOLOHead to choose coordinates format. | 2021. 10. 09 |
0.4.5 | Add C3 Module | 2021. 10. 08 |
0.4.4 | Fix YOLOHead module issue with anchor scaling | 2021. 10. 08 |
0.4.2 | Add YOLOModel, and ConvBN fusion, and Fix activation apply issue | 2021. 09. 19 |
0.4.1 | Add YOLOHead, SPP, BottleneckCSP, and Focus modules | 2021. 09. 13 |
0.3.2 | Fix PreTrained to work without PreTrainedFeatureMap | 2021. 06. 03 |
0.3.1 | Calculating MACs in profiler | 2021. 05. 02 |
0.3.0 | Add PreTrained support | 2021. 04. 20 |
Planned features
Custom module supportCustom module with yaml supportUse pre-trained model- Graphical model file generator
- Ensemble model
- More modules!