Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

labelme2coco

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

labelme2coco

Convert labelme annotations into coco format in one step

  • 0.2.6
  • PyPI
  • Socket score

Maintainers
1

labelme2coco

downloads pypi version ci fcakyon twitter

A lightweight package for converting your labelme annotations into COCO object detection format.
teaser

Convert LabelMe annotations to COCO format in one step

labelme is a widely used is a graphical image annotation tool that supports classification, segmentation, instance segmentation and object detection formats. However, widely used frameworks/models such as Yolact/Solo, Detectron, MMDetection etc. requires COCO formatted annotations.

You can use this package to convert labelme annotations to COCO format.

Getting started

Installation

pip install -U labelme2coco

Basic Usage

labelme2coco path/to/labelme/dir
labelme2coco path/to/labelme/dir --train_split_rate 0.85
labelme2coco path/to/labelme/dir --category_id_start 1

Advanced Usage

# import package
import labelme2coco

# set directory that contains labelme annotations and image files
labelme_folder = "tests/data/labelme_annot"

# set export dir
export_dir = "tests/data/"

# set train split rate
train_split_rate = 0.85

# set category ID start value
category_id_start = 1

# convert labelme annotations to coco
labelme2coco.convert(labelme_folder, export_dir, train_split_rate, category_id_start=category_id_start)
# import functions
from labelme2coco import get_coco_from_labelme_folder, save_json

# set labelme training data directory
labelme_train_folder = "tests/data/labelme_annot"

# set labelme validation data directory
labelme_val_folder = "tests/data/labelme_annot"

# set path for coco json to be saved
export_dir = "tests/data/"

# set category ID start value
category_id_start = 1

# create train coco object
train_coco = get_coco_from_labelme_folder(labelme_train_folder, category_id_start=category_id_start)

# export train coco json
save_json(train_coco.json, export_dir+"train.json")

# create val coco object
val_coco = get_coco_from_labelme_folder(labelme_val_folder, coco_category_list=train_coco.json_categories, category_id_start=category_id_start)

# export val coco json
save_json(val_coco.json, export_dir+"val.json")

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc