You're Invited:Meet the Socket Team at BlackHat and DEF CON in Las Vegas, Aug 4-6.RSVP
Socket
Book a DemoInstallSign in
Socket

langchain-desearch

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

langchain-desearch

LangChain integration with Desearch API for search and data-fetching tools.

1.0.6
pipPyPI
Maintainers
1

LangChain Desearch Integration

This project integrates the Desearch API with LangChain tools to enable various search and data-fetching functionalities, such as web searches, Twitter data retrieval, and AI-powered searches.

Features

  • Grouped Tools:
    • Search Tools: General-purpose search tools for AI, web, and Twitter searches.
    • Twitter Tools: Tools specifically for Twitter-related operations.

Installation

Install the package using pip:

pip install langchain-desearch

Usage

Grouped Tools

Search Tools

The search_tools group contains tools for general-purpose searches:

  • DesearchTool: Perform AI searches, web link searches, and Twitter post searches.
  • BasicWebSearchTool: Conduct basic web searches.
  • BasicTwitterSearchTool: Perform advanced Twitter searches with filters.

Twitter Tools

The twitter_tools group contains tools specifically for Twitter-related operations:

  • BasicTwitterSearchTool: Perform a basic Twitter search using Desearch.
  • FetchTweetsByUrlsTool: Retrieve tweets from specific URLs.
  • FetchTweetsByIdTool: Fetch tweets using their unique IDs.
  • FetchLatestTweetsTool: Get the latest tweets from a specific user.
  • FetchTweetsAndRepliesByUserTool: Retrieve tweets and replies from a user.
  • FetchRepliesByPostTool: Fetch replies to a specific Twitter post.
  • FetchRetweetsByPostTool: Retrieve retweets of a specific post.
  • FetchTwitterUserTool: Get detailed information about a Twitter user.

Examples

Using Tools

from langchain_desearch.tools import DesearchTool, BasicWebSearchTool, BasicTwitterSearchTool
from dotenv import load_dotenv
load_dotenv()

# Example 1: Using DesearchTool
tool = DesearchTool()
result = tool._run(
    prompt="Bittensor",
    tool=['web'],
    model="NOVA",
    date_filter="PAST_24_HOURS",
    streaming=False
)
print(result)

# Example 2: Using BasicWebSearchTool
tool = BasicWebSearchTool()
result = tool._run(
    query="Latest news on AI",
    num=5,
    start=1
)
print(result)

# Example 3: Using BasicTwitterSearchTool
tool = BasicTwitterSearchTool()
result = tool._run(
    query="AI trends",
    sort="Top",
    count=5
)
print(result)

Using RAG (Retrieval-Augmented Generation)

from langchain_core.prompts import PromptTemplate, ChatPromptTemplate
from langchain_core.runnables import RunnableLambda, RunnablePassthrough, RunnableParallel
from langchain_core.output_parsers import StrOutputParser
from langchain_desearch.tools import DesearchTool
from langchain_deepseek import ChatDeepSeek

# Setup Desearch Tool
desearch_tool = DesearchTool()

# Template to wrap Desearch output
document_prompt = PromptTemplate.from_template("""
<source>
    <result>{result}</result>
</source>
""")

# Retrieval chain using DesearchTool
def get_desearch_context(prompt: str) -> str:
    return desearch_tool._run(prompt=prompt, tool="desearch_web", model="NOVA")

retrieval_chain = RunnableLambda(lambda query: {
    "result": get_desearch_context(query)
}) | document_prompt | (lambda docs: docs.text)

# Prompt for RAG generation
generation_prompt = ChatPromptTemplate.from_messages([
    ("system", "You are an expert research assistant. You use xml-formatted context to research people's questions."),
    ("human", """
Please answer the following query based on the provided context. Please cite your sources at the end of your response.:

Query: {query}
---
<context>
{context}
</context>
""")
])

# Use DeepSeek for LLM
llm = ChatDeepSeek(
    model="deepseek-chat",
    temperature=0.7,
    max_tokens=None,
    timeout=None,
    max_retries=2
)

output_parser = StrOutputParser()

# Final chain
chain = RunnableParallel({
    "query": RunnablePassthrough(),
    "context": retrieval_chain,
}) | generation_prompt | llm | output_parser

# Run it!
query = "Recent trends in AI safety research"
result = chain.invoke(query)
print(result)

Using the LangChain Agent

from langchain_desearch.agent import create_search_agent
from langchain_deepseek import ChatDeepSeek

# Create a DeepSeek LLM instance
llm = ChatDeepSeek(
    model="deepseek-chat",
    temperature=0.7,
    max_tokens=None,
    timeout=None,
    max_retries=2
)

# Initialize the search agent
search_agent = create_search_agent(llm=llm)

# Use the agent to perform a task
state = {
    "input_message": "What's the latest news on AI?",
}
response = search_agent.invoke(state)
print(f"Agent Response: {response['output']}")

Running Tests

Dummy Tests

Run the dummy tests to verify the tools' functionality with mocked data:

pytest tests/test_tools.py

Real API Tests

Run the real tests to verify the tools' functionality with the Desearch API:

pytest tests/test_tools_real.py

Note: Ensure you have a valid DESEARCH_API_KEY in your .env file before running real tests.

Project Structure

langchain_desearch/
├── langchain_desearch/
│   ├── __init__.py
│   ├── tools.py
│   ├── search_tools.py
│   ├── agent.py
├── examples/
│   ├── tools.py
│   ├── RAG.py
│   ├── agent.py
├── tests/
│   ├── test_tools.py
│   ├── test_tools_real.py
├── .env
├── README.md
├── setup.py
├── requirements.txt

Contributing

  • Fork the repository.
  • Create a new branch for your feature or bug fix:
    git checkout -b feature-name
    
  • Commit your changes:
    git commit -m "Add feature-name"
    
  • Push to your branch:
    git push origin feature-name
    
  • Create a pull request.

License

This project is licensed under the MIT License. See the LICENSE file for details.

Contact

For questions or support, please contact [your-email@example.com].

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts