Security News
Research
Data Theft Repackaged: A Case Study in Malicious Wrapper Packages on npm
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
langchain-google-genai
Advanced tools
An integration package connecting Google's genai package and LangChain
This package contains the LangChain integrations for Gemini through their generative-ai SDK.
pip install -U langchain-google-genai
This package contains the ChatGoogleGenerativeAI
class, which is the recommended way to interface with the Google Gemini series of models.
To use, install the requirements, and configure your environment.
export GOOGLE_API_KEY=your-api-key
Then initialize
from langchain_google_genai import ChatGoogleGenerativeAI
llm = ChatGoogleGenerativeAI(model="gemini-pro")
llm.invoke("Sing a ballad of LangChain.")
Gemini vision model supports image inputs when providing a single chat message. Example:
from langchain_core.messages import HumanMessage
from langchain_google_genai import ChatGoogleGenerativeAI
llm = ChatGoogleGenerativeAI(model="gemini-pro-vision")
# example
message = HumanMessage(
content=[
{
"type": "text",
"text": "What's in this image?",
}, # You can optionally provide text parts
{"type": "image_url", "image_url": "https://picsum.photos/seed/picsum/200/300"},
]
)
llm.invoke([message])
The value of image_url
can be any of the following:

)This package also adds support for google's embeddings models.
from langchain_google_genai import GoogleGenerativeAIEmbeddings
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
embeddings.embed_query("hello, world!")
Enables retrieval augmented generation (RAG) in your application.
# Create a new store for housing your documents.
corpus_store = GoogleVectorStore.create_corpus(display_name="My Corpus")
# Create a new document under the above corpus.
document_store = GoogleVectorStore.create_document(
corpus_id=corpus_store.corpus_id, display_name="My Document"
)
# Upload some texts to the document.
text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=0)
for file in DirectoryLoader(path="data/").load():
documents = text_splitter.split_documents([file])
document_store.add_documents(documents)
# Talk to your entire corpus with possibly many documents.
aqa = corpus_store.as_aqa()
answer = aqa.invoke("What is the meaning of life?")
# Read the response along with the attributed passages and answerability.
print(response.answer)
print(response.attributed_passages)
print(response.answerable_probability)
FAQs
An integration package connecting Google's genai package and LangChain
We found that langchain-google-genai demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 4 open source maintainers collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Research
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
Research
Security News
Attackers used a malicious npm package typosquatting a popular ESLint plugin to steal sensitive data, execute commands, and exploit developer systems.
Security News
The Ultralytics' PyPI Package was compromised four times in one weekend through GitHub Actions cache poisoning and failure to rotate previously compromised API tokens.