Security News
Research
Data Theft Repackaged: A Case Study in Malicious Wrapper Packages on npm
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
This package contains the LangChain integration with Redis, providing powerful tools for vector storage, semantic caching, and chat history management.
pip install -U langchain-redis
This will install the package along with its dependencies, including redis
, redisvl
, and ulid
.
To use this package, you need to have a Redis instance running. You can configure the connection by setting the following environment variable:
export REDIS_URL="redis://username:password@localhost:6379"
Alternatively, you can pass the Redis URL directly when initializing the components or use the RedisConfig
class for more detailed configuration.
The RedisVectorStore
class provides a vector database implementation using Redis.
from langchain_redis import RedisVectorStore, RedisConfig
from langchain_core.embeddings import Embeddings
embeddings = Embeddings() # Your preferred embedding model
config = RedisConfig(
index_name="my_vectors",
redis_url="redis://localhost:6379",
distance_metric="COSINE" # Options: COSINE, L2, IP
)
vector_store = RedisVectorStore(embeddings, config=config)
# Adding documents
texts = ["Document 1 content", "Document 2 content"]
metadatas = [{"source": "file1"}, {"source": "file2"}]
vector_store.add_texts(texts, metadatas=metadatas)
# Adding documents with custom keys
custom_keys = ["doc1", "doc2"]
vector_store.add_texts(texts, metadatas=metadatas, keys=custom_keys)
# Similarity search
query = "Sample query"
docs = vector_store.similarity_search(query, k=2)
# Similarity search with score
docs_and_scores = vector_store.similarity_search_with_score(query, k=2)
# Similarity search with filtering
filter_expr = Tag("category") == "science"
filtered_docs = vector_store.similarity_search(query, k=2, filter=filter_expr)
# Maximum marginal relevance search
docs = vector_store.max_marginal_relevance_search(query, k=2, fetch_k=10)
The RedisCache
and RedisSemanticCache
classes provide caching mechanisms for LLM calls.
from langchain_redis import RedisCache, RedisSemanticCache
from langchain_core.language_models import LLM
from langchain_core.embeddings import Embeddings
# Standard cache
cache = RedisCache(redis_url="redis://localhost:6379", ttl=3600)
# Semantic cache
embeddings = Embeddings() # Your preferred embedding model
semantic_cache = RedisSemanticCache(
redis_url="redis://localhost:6379",
embedding=embeddings,
distance_threshold=0.1
)
# Using cache with an LLM
llm = LLM(cache=cache) # or LLM(cache=semantic_cache)
# Async cache operations
await cache.aupdate("prompt", "llm_string", [Generation(text="cached_response")])
cached_result = await cache.alookup("prompt", "llm_string")
The RedisChatMessageHistory
class provides a Redis-based storage for chat message history.
from langchain_redis import RedisChatMessageHistory
from langchain_core.messages import HumanMessage, AIMessage, SystemMessage
history = RedisChatMessageHistory(
session_id="user_123",
redis_url="redis://localhost:6379",
ttl=3600 # Optional: set TTL for message expiration
)
# Adding messages
history.add_user_message("Hello, AI!")
history.add_ai_message("Hello, human! How can I assist you today?")
history.add_message(SystemMessage(content="This is a system message"))
# Retrieving messages
messages = history.messages
# Searching messages
results = history.search_messages("assist")
# Get the number of messages
message_count = len(history)
# Clear history
history.clear()
The RedisConfig
class allows for detailed configuration of the Redis integration:
from langchain_redis import RedisConfig
config = RedisConfig(
index_name="my_index",
redis_url="redis://localhost:6379",
distance_metric="COSINE",
key_prefix="my_prefix",
vector_datatype="FLOAT32",
storage_type="hash",
metadata_schema=[
{"name": "category", "type": "tag"},
{"name": "price", "type": "numeric"}
]
)
Refer to the inline documentation for detailed information on these configuration options.
The package uses Python's standard logging module. You can configure logging to get more information about the package's operations:
import logging
logging.basicConfig(level=logging.INFO)
Error handling is done through custom exceptions. Make sure to handle these exceptions in your application code.
k
and fetch_k
parameters in similarity searches to balance between accuracy and performance.For more detailed examples and use cases, please refer to the docs/
directory in this repository.
The libray is rooted at libs/redis
, for all the commands below, CD to libs\redis
:
To install dependencies for unit tests:
poetry install --with test
To run unit tests:
make test
To run a specific test:
TEST_FILE=tests/unit_tests/test_imports.py make test
You would need an OpenAI API Key to run the integration tests:
export OPENAI_API_KEY=sk-J3nnYJ3nnYWh0Can1Turnt0Ug1VeMe50mth1n1cAnH0ld0n2
To install dependencies for integration tests:
poetry install --with test,test_integration
To run integration tests:
make integration_tests
Install langchain-redis development requirements (for running langchain, running examples, linting, formatting, tests, and coverage):
poetry install --with lint,typing,test,test_integration
Then verify dependency installation:
make lint
This project is licensed under the MIT License (LICENSE).
FAQs
An integration package connecting Redis and LangChain
We found that langchain-redis demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 2 open source maintainers collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Research
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
Research
Security News
Attackers used a malicious npm package typosquatting a popular ESLint plugin to steal sensitive data, execute commands, and exploit developer systems.
Security News
The Ultralytics' PyPI Package was compromised four times in one weekend through GitHub Actions cache poisoning and failure to rotate previously compromised API tokens.