Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

langfun

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

langfun

Langfun: Language as Functions.

  • 0.1.1
  • PyPI
  • Socket score

Maintainers
1
logo

Langfun

PyPI version codecov pytest

Installation | Getting started | Tutorial

Introduction

Langfun is a PyGlove powered library that aims to make language models (LM) fun to work with. Its central principle is to enable seamless integration between natural language and programming by treating language as functions. Through the introduction of Object-Oriented Prompting, Langfun empowers users to prompt LLMs using objects and types, offering enhanced control and simplifying agent development.

To unlock the magic of Langfun, you can start with Langfun 101. Notably, Langfun is compatible with popular LLMs such as Gemini, GPT, Claude, all without the need for additional fine-tuning.

Why Langfun?

Langfun is powerful and scalable:

  • Seamless integration between natural language and computer programs.
  • Modular prompts, which allows a natural blend of texts and modalities;
  • Efficient for both request-based workflows and batch jobs;
  • A powerful eval framework that thrives dimension explosions.

Langfun is simple and elegant:

  • An intuitive programming model, graspable in 5 minutes;
  • Plug-and-play into any Python codebase, making an immediate difference;
  • Comprehensive LLMs under a unified API: Gemini, GPT, Claude, Llama3, and more.
  • Designed for agile developement: offering intellisense, easy debugging, with minimal overhead;

Hello, Langfun

import langfun as lf
import pyglove as pg

from IPython import display

class Item(pg.Object):
  name: str
  color: str

class ImageDescription(pg.Object):
  items: list[Item]

image = lf.Image.from_uri('https://upload.wikimedia.org/wikipedia/commons/thumb/8/83/Solar_system.jpg/1646px-Solar_system.jpg')
display.display(image)

desc = lf.query(
    'Describe objects in {{my_image}} from top to bottom.',
    ImageDescription,
    lm=lf.llms.Gpt4o(api_key='<your-openai-api-key>'),
    my_image=image,
)
print(desc)

Output:

my_image

ImageDescription(
  items = [
    0 : Item(
      name = 'Mercury',
      color = 'Gray'
    ),
    1 : Item(
      name = 'Venus',
      color = 'Yellow'
    ),
    2 : Item(
      name = 'Earth',
      color = 'Blue and white'
    ),
    3 : Item(
      name = 'Moon',
      color = 'Gray'
    ),
    4 : Item(
      name = 'Mars',
      color = 'Red'
    ),
    5 : Item(
      name = 'Jupiter',
      color = 'Brown and white'
    ),
    6 : Item(
      name = 'Saturn',
      color = 'Yellowish-brown with rings'
    ),
    7 : Item(
      name = 'Uranus',
      color = 'Light blue'
    ),
    8 : Item(
      name = 'Neptune',
      color = 'Dark blue'
    )
  ]
)

See Langfun 101 for more examples.

Install

pip install langfun

Or install nightly build with:

pip install langfun --pre

Disclaimer: this is not an officially supported Google product.

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc