Security News
Research
Data Theft Repackaged: A Case Study in Malicious Wrapper Packages on npm
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
|ProjectStatus|_ |Version|_ |BuildStatus|_ |License|_ |PythonVersions|_ |DOI|
.. |ProjectStatus| image:: https://www.repostatus.org/badges/latest/active.svg .. _ProjectStatus: https://www.repostatus.org/#active
.. |Version| image:: https://img.shields.io/pypi/v/libtfr.svg .. _Version: https://pypi.python.org/pypi/libtfr/
.. |BuildStatus| image:: https://github.com/melizalab/libtfr/actions/workflows/python-package.yml/badge.svg .. _BuildStatus: https://github.com/melizalab/libtfr/actions/workflows/python-package.yml
.. |License| image:: https://img.shields.io/pypi/l/libtfr.svg .. _License: https://opensource.org/license/gpl-2-0/
.. |PythonVersions| image:: https://img.shields.io/pypi/pyversions/libtfr.svg .. _PythonVersions: https://pypi.python.org/pypi/libtfr/
.. |DOI| image:: https://zenodo.org/badge/1833187.svg :target: https://zenodo.org/badge/latestdoi/1833187
Libtfr is a library for calculating multi-taper time-frequency reassignment (TFR) spectrograms. Time-frequency reassignment is a method that makes use of the instantaneous frequency and phase values in a spectrogram to ‘deconvolve’ the image, and can yield substantially sharper spectrograms with better signal-noise resolution than conventional windowed spectrograms (i.e. short-time Fourier transforms) or multi-taper spectrograms (using the discrete prolate spherical sequences).
The library will also calculate conventional windowed spectrograms and multitaper spectrograms.
Libtfr has C and Python APIs. The Python package has been tested on CPython 3.7-3.11 and PyPy 3.7-3.10.
To install from PyPI:
.. code:: bash
pip install libtfr
Wheels are built for most versions of linux and macosx using
cibuildwheel <https://github.com/pypa/cibuildwheel/>
. These are
statically linked to generic LAPACK routines and a fairly old version of
fftw, so if speed is a concern, consider compiling yourself against
optimized libraries of your own following the instructions below.
Windows wheels with statically linked FFTW and LAPACK libraries have
kindly been developed by carlkl <https://github.com/carlkl>
, but
they very out of date now. Install with
pip install -i https://pypi.anaconda.org/carlkl/simple libtfr
Installing from source
To build the python module, you’ll need to install some system
dependencies first. On Debian:
.. code:: bash
sudo apt-get install libfftw3-dev liblapack-dev
On OS X with Macports:
.. code:: bash
sudo port install fftw-3
To build and install the python module from source:
.. code:: bash
pip install .
Use
~~~
To compute a time-frequency reassignment spectrogram in Python:
.. code:: python
import libtfr
nfft = 256
Np = 201
shift = 10
K = 6
tm = 6.0
flock = 0.01
tlock = 5
# load signal of dimension (npoints,)
signal = ...
S = libtfr.tfr_spec(signal, nfft, shift, Np, K, tm, flock, tlock)
See below for more information on the parameters.
Mulitaper Spectral Analysis
Libtfr can also calculate multitaper and standard windowed Fourier transforms. For example, discrete prolate spherical sequences can be used to obtain multiple independent estimates of spectral statistics while maintaining optimal time-frequency tradeoffs (Prieto et al, 2007). The Python interface for MT calculations is somewhat different:
.. code:: python
import libtfr
signal = ...
D = libtfr.mfft_dpss(npoints, 3, 5)
Z = D.mtfft(signal)
P = D.mtpsd(signal)
D = libtfr.mfft_dpss(512, 3, 5)
Z = D.mtstft(signal, 10)
P = D.mtspec(signal, 10)
from numpy import hanning D = libtfr.mfft_precalc(256, hanning(200))
P = D.mtspec(signal, 10)
To build the C library you will also need to have
scons <http://www.scons.org>
__ installed. You may need to edit the
SConstruct file to make sure it points to the correct LAPACK libraries.
To build the shared library:
::
scons lib
To install the libraries and header (default to /usr/local/lib
and
/usr/local/include
):
::
scons install
A small test program, test_tfr, can be built with scons test
. The
program generates a signal with sinusoidally modulated frequency and
then calculates a multitaper PSD, a multitaper spectrogram, and a
time-frequency reassigned spectrogram. The results are output in ASCII
format to tfr_in.dat
, tfr_out_psd.dat
, tfr_out_mtm.dat
, and
tfr_out_tfr.dat
.
See src/test_tfr.c
for an example of how to use the C API.
The C header tfr.h
and python module libtfr.pyx
are both
extensively documented.
The software was assembled from various MATLAB sources, including the time-frequency toolkit, Xiao and Flandrin’s work on multitaper reassignment, and code from Gardner and Magnasco.
The basic principle is to use reassignment to increase the precision of the time-frequency localization, essentially by deconvolving the spectrogram with the TF representation of the window, recovering the center of mass of the spectrotemporal energy. Reassigned TFRs typically show a ‘froth’ for noise, and strong narrow lines for coherent signals like pure tones, chirps, and so forth. The use of multiple tapers reinforces the coherent signals while averaging out the froth, giving a very clean spectrogram with optimal precision and resolution properties.
Gardner & Magnasco (2006) calculate reassignment based on a different algorithm from Xiao and Flandrin (2007). The latter involves 3 different FFT operations on the signal windowed with the hermitian taper h(t), its derivative h’(t), and its time product t × h(t). The G&M algorithm only uses two FFTs, on the signal windowed with a Gaussian and its time derivative. If I understand their methods correctly, however, this derivation is based on properties of the fourier transform of the gaussian, and isn’t appropriate for window functions based on the Hermitian tapers, which have more optimal distribution of energy over the TF plane (i.e., it takes fewer Hermitian tapers than Gaussian tapers to achieve the same quality spectrogram)
Therefore, the algorithm is mostly from X&F, though I include time and frequency locking parameters from G&M, which specify how far energy is allowed to be reassigned in the TF plane. Large displacements generally arise from numerical errors, so this helps to sharpen the lines somewhat. I also included the time/frequency interpolation from Prieto et al (2007), which can be used to get higher precision (at the expense of less averaging) from smaller analysis windows.
Some fiddling with parameters is necessary to get the best spectrograms
from a given sort of signal. Like the window size in an STFT, the taper
parameters control the time-frequency resolution. However, in the
reassignment spectrogram the precision (i.e. localization) is not
affected by the taper size, so the effects of taper size will generally
only be seen when two coherent signals are close to each other in time
or frequency. Nh
controls the size of the tapers; one can also
adjust tm
, the time support of the tapers, but depending on the
number of tapers used, this shouldn’t get a whole lot smaller than 5.
Increased values of Nh
result in improved narrowband resolution
(i.e. between pure tones) but closely spaced clicks can become smeared.
Decreasing Nh
increases the resolution between broadband components
(i.e. clicks) but smears closely spaced narrowband components. The
effect of smearing can be ameliorated to some extent by adjusting the
frequency/time locking parameters.
The frequency zoom parameter can be used to speed up calculation quite a bit. Since calculating the multitaper reassigned spectrogram takes 3xNtapers FFT operations, smaller FFTs are generally better. The spectrogram can then be binned at a finer resolution during reassignment. These two sets of parameters should generate fairly similar results:
::
nfft=512, shift=10, tm=6, Nh=257, zoomf=1, zoomt=1 (default) nfft=256, shift=10, tm=6, Nh=257, zoomf=2, zoomt=1
Increasing the order generally reduces the background ‘froth’, but interference between closely spaced components may increase.
Additional improvements in resolution may be achievable averaging across different window sizes, or by using other averaging methods (i.e. as in Xiao and Flandrin 2007)
libtfr was written by C Daniel Meliza and is licensed under the Gnu Public License (GPL) version 2; see COPYING for details.
some code is adapted from chronux (http://www.chronux.org), by Partha Mitra and Hemant Bokil, also licensed under GPL version 2
THE PROGRAMS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF MERCANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR ANY OTHER WARRANTY, EXPRESS OR IMPLIED. IN NO EVENT SHALL THE UNIVERSITY OF CHICAGO OR DR. MELIZA BE LIABLE FOR ANY DIRECT OR CONSEQUENTIAL DAMAGES RESULTING FROM USE OF THE PROGRAMS. THE USER BEARS THE ENTIRE RISK FOR USE OF THE PROGRAMS.
FAQs
Calculates multi-taper windowed and time-frequency reassignment spectrograms
We found that libtfr demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Research
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
Research
Security News
Attackers used a malicious npm package typosquatting a popular ESLint plugin to steal sensitive data, execute commands, and exploit developer systems.
Security News
The Ultralytics' PyPI Package was compromised four times in one weekend through GitHub Actions cache poisoning and failure to rotate previously compromised API tokens.