You're Invited:Meet the Socket Team at BlackHat and DEF CON in Las Vegas, Aug 4-6.RSVP
Socket
Book a DemoInstallSign in
Socket

llama-index-readers-pandas-ai

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

llama-index-readers-pandas-ai

llama-index readers pandas_ai integration

0.4.1
pipPyPI
Maintainers
1

Pandas AI Loader

pip install llama-index-readers-pandas-ai

This loader is a light wrapper around the PandasAI Python package.

See here: https://github.com/gventuri/pandas-ai.

You can directly get the result of pandasai.run command, or you can choose to load in Document objects via load_data.

Usage

from pandasai.llm.openai import OpenAI
import pandas as pd

# Sample DataFrame
df = pd.DataFrame(
    {
        "country": [
            "United States",
            "United Kingdom",
            "France",
            "Germany",
            "Italy",
            "Spain",
            "Canada",
            "Australia",
            "Japan",
            "China",
        ],
        "gdp": [
            21400000,
            2940000,
            2830000,
            3870000,
            2160000,
            1350000,
            1780000,
            1320000,
            516000,
            14000000,
        ],
        "happiness_index": [7.3, 7.2, 6.5, 7.0, 6.0, 6.3, 7.3, 7.3, 5.9, 5.0],
    }
)

llm = OpenAI()

from llama_index.readers.pandas_ai import PandasAIReader

# use run_pandas_ai directly
# set is_conversational_answer=False to get parsed output
loader = PandasAIReader(llm=llm)
response = reader.run_pandas_ai(
    df, "Which are the 5 happiest countries?", is_conversational_answer=False
)
print(response)

# load data with is_conversational_answer=False
# will use our PandasCSVReader under the hood
docs = reader.load_data(
    df, "Which are the 5 happiest countries?", is_conversational_answer=False
)

# load data with is_conversational_answer=True
# will use our PandasCSVReader under the hood
docs = reader.load_data(
    df, "Which are the 5 happiest countries?", is_conversational_answer=True
)

This loader is designed to be used as a way to load data into LlamaIndex.

Keywords

ai

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts