Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

malss

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

malss

MALSS: MAchine Learning Support System

  • 2.4.2
  • PyPI
  • Socket score

Maintainers
1

MAchine Learning Support System ###############################

malss is a python module to facilitate machine learning tasks. This module is written to be compatible with the scikit-learn algorithms <http://scikit-learn.org/stable/supervised_learning.html>_ and the other scikit-learn-compatible algorithms.

.. image:: https://travis-ci.org/canard0328/malss.svg?branch=master :target: https://travis-ci.org/canard0328/malss

Dependencies


malss requires:

  • python (>= 3.9)
  • numpy (>= 1.21.2)
  • scipy (>= 1.7.1)
  • scikit-learn (>= 1.1.1)
  • matplotlib (>= 3.4.3)
  • pandas (>= 1.3.3)
  • jinja2 (>= 3.1.2)

.. * PyQt5 (== 5.10) (only for interactive mode)

All modules except PyQt5 are automatically installed when installing malss.

Installation


pip install malss

For interactive mode, you need to install PyQt5 using pip.

pip install PyQt5

Example


Supervised learning

Classification:

.. code-block:: python

from malss import MALSS from sklearn.datasets import load_iris iris = load_iris() model = MALSS(task='classification', lang='en') model.fit(iris.data, iris.target, 'classification_result') model.generate_module_sample('classification_module_sample.py')

Regression:

.. code-block:: python

from malss import MALSS from sklearn.datasets import load_boston boston = load_boston() model = MALSS(task='regression', lang='en') model.fit(boston.data, boston.target, 'regression_result') model.generate_module_sample('regression_module_sample.py')

Change algorithm:

.. code-block:: python

from malss import MALSS from sklearn.datasets import load_iris from sklearn.ensemble import RandomForestClassifier as RF iris = load_iris() model = MALSS(task='classification', lang='en') model.fit(iris.data, iris.target, algorithm_selection_only=True) algorithms = model.get_algorithms()

check algorithms here

model.remove_algorithm(0) # remove the first algorithm

add random forest classifier

model.add_algorithm(RF(n_jobs=3), [{'n_estimators': [10, 30, 50], 'max_depth': [3, 5, None], 'max_features': [0.3, 0.6, 'auto']}], 'Random Forest') model.fit(iris.data, iris.target, 'classification_result') model.generate_module_sample('classification_module_sample.py')

Feature selection:

.. code-block:: python

from malss import MALSS from sklearn.datasets import make_friedman1 X, y = make_friedman1(n_samples=1000, n_features=20, noise=0.0, random_state=0) model = MALSS(task='regression', lang='en') model.fit(X, y, dname='default')

check the analysis report

model.select_features() model.fit(X, y, dname='feature_selection')

You can set the original data after feature selection

(You do not need to select features by yourself.)

.. Interactive mode:

In the interactive mode, you can interactively analyze data through a GUI.

.. code-block:: python

from malss import MALSS

MALSS(lang='en', interactive=True)

Unsupervised learning

Clustering:

.. code-block:: python

from malss import MALSS from sklearn.datasets import load_iris

iris = load_iris() model = MALSS(task='clustering', lang='en') model.fit(iris.data, None, 'clustering_result') pred_dict = model.predict(iris.data)

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc