Security News
Research
Data Theft Repackaged: A Case Study in Malicious Wrapper Packages on npm
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
MAchine Learning Support System ###############################
malss
is a python module to facilitate machine learning tasks.
This module is written to be compatible with the scikit-learn algorithms <http://scikit-learn.org/stable/supervised_learning.html>
_ and the other scikit-learn-compatible algorithms.
.. image:: https://travis-ci.org/canard0328/malss.svg?branch=master :target: https://travis-ci.org/canard0328/malss
Dependencies
malss requires:
.. * PyQt5 (== 5.10) (only for interactive mode)
All modules except PyQt5 are automatically installed when installing malss.
Installation
pip install malss
For interactive mode, you need to install PyQt5 using pip.
pip install PyQt5
Example
Classification:
.. code-block:: python
from malss import MALSS from sklearn.datasets import load_iris iris = load_iris() model = MALSS(task='classification', lang='en') model.fit(iris.data, iris.target, 'classification_result') model.generate_module_sample('classification_module_sample.py')
Regression:
.. code-block:: python
from malss import MALSS from sklearn.datasets import load_boston boston = load_boston() model = MALSS(task='regression', lang='en') model.fit(boston.data, boston.target, 'regression_result') model.generate_module_sample('regression_module_sample.py')
Change algorithm:
.. code-block:: python
from malss import MALSS from sklearn.datasets import load_iris from sklearn.ensemble import RandomForestClassifier as RF iris = load_iris() model = MALSS(task='classification', lang='en') model.fit(iris.data, iris.target, algorithm_selection_only=True) algorithms = model.get_algorithms()
model.remove_algorithm(0) # remove the first algorithm
model.add_algorithm(RF(n_jobs=3), [{'n_estimators': [10, 30, 50], 'max_depth': [3, 5, None], 'max_features': [0.3, 0.6, 'auto']}], 'Random Forest') model.fit(iris.data, iris.target, 'classification_result') model.generate_module_sample('classification_module_sample.py')
Feature selection:
.. code-block:: python
from malss import MALSS from sklearn.datasets import make_friedman1 X, y = make_friedman1(n_samples=1000, n_features=20, noise=0.0, random_state=0) model = MALSS(task='regression', lang='en') model.fit(X, y, dname='default')
model.select_features() model.fit(X, y, dname='feature_selection')
.. Interactive mode:
In the interactive mode, you can interactively analyze data through a GUI.
.. code-block:: python
from malss import MALSS
MALSS(lang='en', interactive=True)
Clustering:
.. code-block:: python
from malss import MALSS from sklearn.datasets import load_iris
iris = load_iris() model = MALSS(task='clustering', lang='en') model.fit(iris.data, None, 'clustering_result') pred_dict = model.predict(iris.data)
FAQs
MALSS: MAchine Learning Support System
We found that malss demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Research
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
Research
Security News
Attackers used a malicious npm package typosquatting a popular ESLint plugin to steal sensitive data, execute commands, and exploit developer systems.
Security News
The Ultralytics' PyPI Package was compromised four times in one weekend through GitHub Actions cache poisoning and failure to rotate previously compromised API tokens.