Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

ms-entropy

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

ms-entropy

This package provides a Python implementation of calculating spectral entropy, entropy similarity, and Flash entropy search for mass spectrometry data.

  • 1.3.4
  • PyPI
  • Socket score

Maintainers
1

DOI DOI Test MS Entropy package Documentation Status

If you have any questions, feel free to send me E-mails: mail@yli.one. If you find this package useful, please consider citing the following papers:

Li, Y., Fiehn, O. Flash entropy search to query all mass spectral libraries in real time, Nat Methods 20, 1475-1478 (2023). https://doi.org/10.1038/s41592-023-02012-9

Li, Y., Kind, T., Folz, J. et al. Spectral entropy outperforms MS/MS dot product similarity for small-molecule compound identification, Nat Methods 18, 1524-1531 (2021). https://doi.org/10.1038/s41592-021-01331-z

Theoretical Background

Spectral entropy is an useful property to measure the complexity of a spectrum. It is inspried by the concept of Shannon entropy in information theory. (ref)

Entropy similarity, which measured spectral similarity based on spectral entropy, has been shown to outperform dot product similarity in compound identification. (ref)

The calculation of entropy similarity can be accelerated by using the Flash Entropy Search algorithm. (ref)

How to use this package

This repository contains the source code to calculate spectral entropy and entropy similarity in various programming languages. Also implemented the Flash Entropy Search algorithm in Python.

For Python users

A detailed tutorial is available here: https://msentropy.readthedocs.io

Installation

pip install ms_entropy

Usage of Classical entropy functions

import numpy as np
import ms_entropy as me

peaks_query = np.array([[69.071, 7.917962], [86.066, 1.021589], [86.0969, 100.0]], dtype = np.float32)
peaks_reference = np.array([[41.04, 37.16], [69.07, 66.83], [86.1, 999.0]], dtype = np.float32)

# Calculate entropy similarity.
entropy = me.calculate_spectral_entropy(peaks_query, clean_spectrum = True, min_ms2_difference_in_da = 0.05)
print(f"Spectral entropy is {entropy}.")

# Calculate unweighted entropy similarity.
unweighted_similarity = me.calculate_unweighted_entropy_similarity(peaks_query, peaks_reference, ms2_tolerance_in_da = 0.05)
print(f"Unweighted entropy similarity: {unweighted_similarity}.")

# Calculate entropy similarity.
similarity = me.calculate_entropy_similarity(peaks_query, peaks_reference, ms2_tolerance_in_da = 0.05)
print(f"Entropy similarity: {similarity}.")
from ms_entropy import FlashEntropySearch
entropy_search = FlashEntropySearch()
entropy_search.build_index(spectral_library)
entropy_similarity = entropy_search.search(
    precursor_mz=query_spectrum_precursor_mz, peaks=query_spectrum_peaks)

For R users

A document is available here: https://cran.r-project.org/web/packages/msentropy/msentropy.pdf

Installation

install.packages("msentropy")

Usage

library(msentropy)

# Peaks A
mz_a <- c(169.071, 186.066, 186.0769)
intensity_a <- c(7.917962, 1.021589, 100.0)
peaks_a <- matrix(c(mz_a, intensity_a), ncol = 2, byrow = FALSE)

# Peaks B
mz_b <- c(120.212, 169.071, 186.066)
intensity_b <- c(37.16, 66.83, 999.0)
peaks_b <- matrix(c(mz_b, intensity_b), ncol = 2, byrow = FALSE)

# Calculate spectral entropy
spectral_entropy_a <- calculate_spectral_entropy(clean_spectrum(peaks_a, min_ms2_difference_in_da = 0.02))
spectral_entropy_b <- calculate_spectral_entropy(clean_spectrum(peaks_b, min_ms2_difference_in_da = 0.02))

# Calculate entropy similarity
entropy_similarity <- calculate_entropy_similarity(peaks_a, peaks_b, ms2_tolerance_in_da = 0.02)

For C/C++ users

Usage

#include "SpectralEntropy.h"

// Calculate spectral entropy
{
    int spec_a_len = 3;
    float spec_a[3][2] = {{169.071, 7.917962}, {186.066, 1.021589}, {186.0769, 100.0}};
    
    // The parameters for clean_spectrum function
    int normalize_intensity = 1;
    float ms2_tolerance_in_da = 0.02, ms2_tolerance_in_ppm = -1;
    float min_mz= -1, max_mz = -1;
    float noise_threshold = 0.01;
    int max_peak_num = -1;

    // Always clean the spectrum before calculating spectral entropy
    spec_a_len = clean_spectrum(*spec_a, spec_a_len, min_mz, max_mz, noise_threshold, max_peak_num, ms2_tolerance_in_da, ms2_tolerance_in_ppm, max_peak_num, normalize_intensity);

    // Calculate spectral entropy
    float spectral_entropy = calculate_spectral_entropy(*spec_a, spec_a_len);

    printf("Spectral Entropy: %f\n", spectral_entropy);
}

// Calculate entropy similarity
{
    int spec_a_len = 3;
    float spec_a[3][2] = {{169.071, 7.917962}, {186.066, 1.021589}, {186.0769, 100.0}};

    int spec_b_len = 3;
    float spec_b[3][2] = {{120.212, 37.16}, {169.071, 66.83}, {186.066, 999.0}};

    // The parameters for calculate_entropy_similarity function.
    int clean_spectra = 1;
    float ms2_tolerance_in_da = 0.02, ms2_tolerance_in_ppm = -1;
    float min_mz= -1, max_mz = -1;
    float noise_threshold = 0.01;
    int max_peak_num = -1;

    // Calculate entropy similarity, the data in spec_a and spec_b will modified.
    float similarity = calculate_entropy_similarity(*spec_a, spec_a_len, *spec_b, spec_b_len, ms2_tolerance_in_da, ms2_tolerance_in_ppm, clean_spectra, min_mz, max_mz, noise_threshold, max_peak_num);
    printf("Entropy Similarity: %f\n", similarity);
}

An example is available in folder languages/c folder and Example.c, CMakeLists.txt

For JavaScript users

An example is available in folder languages/javascript folder and example.js

Also, refer to MSViewer repository for a working example of using this package in a web application.

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc