nervaluate
nervaluate is a python module for evaluating Named Entity Recognition (NER) models as defined in the SemEval 2013 - 9.1 task.
The evaluation metrics output by nervaluate go beyond a simple token/tag based schema, and consider different scenarios
based on weather all the tokens that belong to a named entity were classified or not, and also whether the correct
entity type was assigned.
This full problem is described in detail in the original blog
post by David Batista, and extends the code in the
original repository which accompanied the blog post.
The code draws heavily on:
The problem
Token level evaluation for NER is too simplistic
When running machine learning models for NER, it is common to report metrics at the individual token level. This may
not be the best approach, as a named entity can be made up of multiple tokens, so a full-entity accuracy would be
desirable.
When comparing the golden standard annotations with the output of a NER system different scenarios might occur:
I. Surface string and entity type match
Token | Gold | Prediction |
---|
in | O | O |
New | B-LOC | B-LOC |
York | I-LOC | I-LOC |
. | O | O |
II. System hypothesized an incorrect entity
Token | Gold | Prediction |
---|
an | O | O |
Awful | O | B-ORG |
Headache | O | I-ORG |
in | O | O |
III. System misses an entity
Token | Gold | Prediction |
---|
in | O | O |
Palo | B-LOC | O |
Alto | I-LOC | O |
, | O | O |
Based on these three scenarios we have a simple classification evaluation that can be measured in terms of false
positives, true positives, false negatives and false positives, and subsequently compute precision, recall and
F1-score for each named-entity type.
However, this simple schema ignores the possibility of partial matches or other scenarios when the NER system gets
the named-entity surface string correct but the type wrong, and we might also want to evaluate these scenarios
again at a full-entity level.
For example:
IV. System assigns the wrong entity type
Token | Gold | Prediction |
---|
I | O | O |
live | O | O |
in | O | O |
Palo | B-LOC | B-ORG |
Alto | I-LOC | I-ORG |
, | O | O |
V. System gets the boundaries of the surface string wrong
Token | Gold | Prediction |
---|
Unless | O | B-PER |
Karl | B-PER | I-PER |
Smith | I-PER | I-PER |
resigns | O | O |
VI. System gets the boundaries and entity type wrong
Token | Gold | Prediction |
---|
Unless | O | B-ORG |
Karl | B-PER | I-ORG |
Smith | I-PER | I-ORG |
resigns | O | O |
How can we incorporate these described scenarios into evaluation metrics? See the original blog
for a great explanation, a summary is included here:
We can use the following five metrics to consider difference categories of errors:
Error type | Explanation |
---|
Correct (COR) | both are the same |
Incorrect (INC) | the output of a system and the golden annotation don’t match |
Partial (PAR) | system and the golden annotation are somewhat “similar” but not the same |
Missing (MIS) | a golden annotation is not captured by a system |
Spurious (SPU) | system produces a response which doesn’t exist in the golden annotation |
These five metrics can be measured in four different ways:
Evaluation schema | Explanation |
---|
Strict | exact boundary surface string match and entity type |
Exact | exact boundary match over the surface string, regardless of the type |
Partial | partial boundary match over the surface string, regardless of the type |
Type | some overlap between the system tagged entity and the gold annotation is required |
These five errors and four evaluation schema interact in the following ways:
Scenario | Gold entity | Gold string | Pred entity | Pred string | Type | Partial | Exact | Strict |
---|
III | BRAND | tikosyn | | | MIS | MIS | MIS | MIS |
II | | | BRAND | healthy | SPU | SPU | SPU | SPU |
V | DRUG | warfarin | DRUG | of warfarin | COR | PAR | INC | INC |
IV | DRUG | propranolol | BRAND | propranolol | INC | COR | COR | INC |
I | DRUG | phenytoin | DRUG | phenytoin | COR | COR | COR | COR |
VI | GROUP | contraceptives | DRUG | oral contraceptives | INC | PAR | INC | INC |
Then precision/recall/f1-score are calculated for each different evaluation schema. In order to achieve data, two more
quantities need to be calculated:
POSSIBLE (POS) = COR + INC + PAR + MIS = TP + FN
ACTUAL (ACT) = COR + INC + PAR + SPU = TP + FP
Then we can compute precision/recall/f1-score, where roughly describing precision is the percentage of correct
named-entities found by the NER system, and recall is the percentage of the named-entities in the golden annotations
that are retrieved by the NER system. This is computed in two different ways depending on whether we want an exact
match (i.e., strict and exact ) or a partial match (i.e., partial and type) scenario:
Exact Match (i.e., strict and exact )
Precision = (COR / ACT) = TP / (TP + FP)
Recall = (COR / POS) = TP / (TP+FN)
Partial Match (i.e., partial and type)
Precision = (COR + 0.5 × PAR) / ACT = TP / (TP + FP)
Recall = (COR + 0.5 × PAR)/POS = COR / ACT = TP / (TP + FN)
Putting all together:
Measure | Type | Partial | Exact | Strict |
---|
Correct | 3 | 3 | 3 | 2 |
Incorrect | 2 | 0 | 2 | 3 |
Partial | 0 | 2 | 0 | 0 |
Missed | 1 | 1 | 1 | 1 |
Spurious | 1 | 1 | 1 | 1 |
Precision | 0.5 | 0.66 | 0.5 | 0.33 |
Recall | 0.5 | 0.66 | 0.5 | 0.33 |
F1 | 0.5 | 0.66 | 0.5 | 0.33 |
Notes:
In scenarios IV and VI the entity type of the true
and pred
does not match, in both cases we only scored against
the true entity, not the predicted one. You can argue that the predicted entity could also be scored as spurious,
but according to the definition of spurious
:
- Spurious (SPU) : system produces a response which does not exist in the golden annotation;
In this case there exists an annotation, but with a different entity type, so we assume it's only incorrect.
Installation
pip install nervaluate
Example:
The main Evaluator
class will accept a number of formats:
- prodi.gy style lists of spans.
- Nested lists containing NER labels.
- CoNLL style tab delimited strings.
Prodigy spans
true = [
[{"label": "PER", "start": 2, "end": 4}],
[{"label": "LOC", "start": 1, "end": 2},
{"label": "LOC", "start": 3, "end": 4}]
]
pred = [
[{"label": "PER", "start": 2, "end": 4}],
[{"label": "LOC", "start": 1, "end": 2},
{"label": "LOC", "start": 3, "end": 4}]
]
from nervaluate import Evaluator
evaluator = Evaluator(true, pred, tags=['LOC', 'PER'])
# Returns overall metrics and metrics for each tag
results, results_per_tag, result_indices, result_indices_by_tag = evaluator.evaluate()
print(results)
{
'ent_type':{
'correct':3,
'incorrect':0,
'partial':0,
'missed':0,
'spurious':0,
'possible':3,
'actual':3,
'precision':1.0,
'recall':1.0
},
'partial':{
'correct':3,
'incorrect':0,
'partial':0,
'missed':0,
'spurious':0,
'possible':3,
'actual':3,
'precision':1.0,
'recall':1.0
},
'strict':{
'correct':3,
'incorrect':0,
'partial':0,
'missed':0,
'spurious':0,
'possible':3,
'actual':3,
'precision':1.0,
'recall':1.0
},
'exact':{
'correct':3,
'incorrect':0,
'partial':0,
'missed':0,
'spurious':0,
'possible':3,
'actual':3,
'precision':1.0,
'recall':1.0
}
}
print(results_by_tag)
{
'LOC':{
'ent_type':{
'correct':2,
'incorrect':0,
'partial':0,
'missed':0,
'spurious':0,
'possible':2,
'actual':2,
'precision':1.0,
'recall':1.0
},
'partial':{
'correct':2,
'incorrect':0,
'partial':0,
'missed':0,
'spurious':0,
'possible':2,
'actual':2,
'precision':1.0,
'recall':1.0
},
'strict':{
'correct':2,
'incorrect':0,
'partial':0,
'missed':0,
'spurious':0,
'possible':2,
'actual':2,
'precision':1.0,
'recall':1.0
},
'exact':{
'correct':2,
'incorrect':0,
'partial':0,
'missed':0,
'spurious':0,
'possible':2,
'actual':2,
'precision':1.0,
'recall':1.0
}
},
'PER':{
'ent_type':{
'correct':1,
'incorrect':0,
'partial':0,
'missed':0,
'spurious':0,
'possible':1,
'actual':1,
'precision':1.0,
'recall':1.0
},
'partial':{
'correct':1,
'incorrect':0,
'partial':0,
'missed':0,
'spurious':0,
'possible':1,
'actual':1,
'precision':1.0,
'recall':1.0
},
'strict':{
'correct':1,
'incorrect':0,
'partial':0,
'missed':0,
'spurious':0,
'possible':1,
'actual':1,
'precision':1.0,
'recall':1.0
},
'exact':{
'correct':1,
'incorrect':0,
'partial':0,
'missed':0,
'spurious':0,
'possible':1,
'actual':1,
'precision':1.0,
'recall':1.0
}
}
}
from nervaluate import summary_report_overall_indices
print(summary_report_overall_indices(evaluation_indices=result_indices, error_schema='partial', preds=pred))
Indices for error schema 'partial':
Correct indices:
- Instance 0, Entity 0: Label=PER, Start=2, End=4
- Instance 1, Entity 0: Label=LOC, Start=1, End=2
- Instance 1, Entity 1: Label=LOC, Start=3, End=4
Incorrect indices:
- None
Partial indices:
- None
Missed indices:
- None
Spurious indices:
- None
Nested lists
true = [
['O', 'O', 'B-PER', 'I-PER', 'O'],
['O', 'B-LOC', 'I-LOC', 'B-LOC', 'I-LOC', 'O'],
]
pred = [
['O', 'O', 'B-PER', 'I-PER', 'O'],
['O', 'B-LOC', 'I-LOC', 'B-LOC', 'I-LOC', 'O'],
]
evaluator = Evaluator(true, pred, tags=['LOC', 'PER'], loader="list")
results, results_by_tag, result_indices, result_indices_by_tag = evaluator.evaluate()
CoNLL style tab delimited
true = "word\tO\nword\tO\B-PER\nword\tI-PER\n"
pred = "word\tO\nword\tO\B-PER\nword\tI-PER\n"
evaluator = Evaluator(true, pred, tags=['PER'], loader="conll")
results, results_by_tag, result_indices, result_indices_by_tag = evaluator.evaluate()
Extending the package to accept more formats
Additional formats can easily be added to the module by creating a conversion function in nervaluate/utils.py
,
for example conll_to_spans()
. This function must return the spans in the prodigy style dicts shown in the prodigy
example above.
The new function can then be added to the list of loaders in nervaluate/nervaluate.py
, and can then be selection
with the loader
argument when instantiating the Evaluator
class.
A list of formats we intend to include is included in https://github.com/ivyleavedtoadflax/nervaluate/issues/3.
Contributing to the nervaluate package
Improvements, adding new features and bug fixes are welcome. If you wish to participate in the development of nervaluate
please read the following guidelines.
The contribution process at a glance
- Preparing the development environment
- Code away!
- Continuous Integration
- Submit your changes by opening a pull request
Small fixes and additions can be submitted directly as pull requests, but larger changes should be discussed in
an issue first. You can expect a reply within a few days, but please be patient if it takes a bit longer.
Preparing the development environment
Make sure you have Python3.8 installed on your system
macOs
brew install python@3.8
python3.8 -m pip install --user --upgrade pip
python3.8 -m pip install virtualenv
Clone the repository and prepare the development environment:
git clone git@github.com:MantisAI/nervaluate.git
cd nervaluate
python3.8 -m virtualenv venv
source venv/bin/activate
pip install -r requirements_dev.txt
pip install -e .
Continuous Integration
nervaluate runs a continuous integration (CI) on all pull requests. This means that if you open a pull request (PR),
a full test suite is run on your PR:
- The code is formatted using
black
- Linting is done using
pyling
and flake8
- Type checking is done using
mypy
- Tests are run using
pytest
Nevertheless, if you prefer to run the tests & formatting locally, it's possible too.
make all
Opening a Pull Request
Every PR should be accompanied by short description of the changes, including:
- Impact and motivation for the changes
- Any open issues that are closed by this PR
Give a ⭐️ if this project helped you!