Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

nvidia-pytriton

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

nvidia-pytriton

PyTriton - Flask/FastAPI-like interface to simplify Triton's deployment in Python environments.

  • 0.5.13
  • Source
  • PyPI
  • Socket score

Maintainers
1

.. Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

PyTriton

PyTriton - a Flask/FastAPI-like framework designed to streamline the use of NVIDIA's Triton Inference Server <https://github.com/triton-inference-server>_.

For comprehensive guidance on how to deploy your models, optimize performance, and explore the API, delve into the extensive resources found in our documentation <https://triton-inference-server.github.io/pytriton/>_.

Features at a Glance

The distinct capabilities of PyTriton are summarized in the feature matrix:

+------------------------+--------------------------------------------------------------------------------------+ | Feature | Description | +========================+======================================================================================+ | Native Python support | You can create any Python function <https://triton-inference-server.github.io/pytri | | | ton/latest/inference_callables/>_ and expose it as an HTTP/gRPC API. | +------------------------+--------------------------------------------------------------------------------------+ | Framework-agnostic | You can run any Python code with any framework of your choice, such as: PyTorch, | | | TensorFlow, or JAX. | +------------------------+--------------------------------------------------------------------------------------+ | Performance | You can benefit from dynamic batching <https://triton-inference-server.github.io/py | | optimization | triton/latest/inference_callables/decorators/#batch>, response cache, model | | | pipelining, clusters <https://triton-inference-server.github.io/pytriton/latest/ | | | guides/deploying_in_clusters/>, performance tracing <https://triton-inference- | | | server.github.io/pytriton/latest/guides/distributed_tracing/>, and GPU/CPU | | | inference. | +------------------------+--------------------------------------------------------------------------------------+ | Decorators | You can use batching decorators <https://triton-inference-server.github.io/pytriton | | | /latest/inference_callables/decorators/> to handle batching and other | | | pre-processing tasks for your inference function. | +------------------------+--------------------------------------------------------------------------------------+ | Easy installation | You can use a simple and familiar interface based on Flask/FastAPI for easy | | <https://triton-infer | installation and setup <https://triton-inference-server.github.io/pytriton/latest/b | | ence-server.github.io/ | inding_models/>_. | | pytriton/latest/instal | | | lation/>_ and setup | | +------------------------+--------------------------------------------------------------------------------------+ | Model clients | You can access high-level model clients for HTTP/gRPC requests with configurable | | <https://triton-infer | options and both synchronous and asynchronous <https://triton-inference-server.gith | | ence-server.github.io/ | ub.io/pytriton/latest/clients/#asynciomodelclient>_ API. | | pytriton/latest/clien | | | ts>_ | | +------------------------+--------------------------------------------------------------------------------------+ | Streaming (alpha) | You can stream partial responses from a model by serving it in a decoupled mode | | | <https://triton-inference-server.github.io/pytriton/latest/clients/#decoupledmodelcl | | | ient>_. | +------------------------+--------------------------------------------------------------------------------------+

Learn more about PyTriton's architecture <https://triton-inference-server.github.io/pytriton/latest/#architecture>_.

Prerequisites

Before proceeding with the installation of PyTriton, ensure your system meets the following criteria:

  • Operating System: Compatible with glibc version 2.35 or higher.
    • Primarily tested on Ubuntu 22.04.
    • Other supported OS include Debian 11+, Rocky Linux 9+, and Red Hat UBI 9+.
    • Use ldd --version to verify your glibc version.
  • Python: Version 3.8 or newer.
  • pip: Version 20.3 or newer.
  • libpython: Ensure libpython3.*.so is installed, corresponding to your Python version.

Install

The PyTriton can be installed from pypi.org by running the following command::

pip install nvidia-pytriton

Important: The Triton Inference Server binary is installed as part of the PyTriton package.

Discover more about PyTriton's installation procedures <https://triton-inference-server.github.io/pytriton/latest/installation/>, including Docker usage, prerequisites, and insights into building binaries from source <https://triton-inference-server.github.io/pytriton/latest/guides/building/> to match your specific Triton server versions.

Quick Start

The quick start presents how to run Python model in Triton Inference Server without need to change the current working environment. In the example we are using a simple Linear model.

The infer_fn is a function that takes an data tensor and returns a list with single output tensor. The @batch from batching decorators <https://triton-inference-server.github.io/pytriton/latest/inference_callables/decorators/>_ is used to handle batching for the model.

.. code-block:: python

import numpy as np
from pytriton.decorators import batch

@batch
def infer_fn(data):
    result = data * np.array([[-1]], dtype=np.float32)  # Process inputs and produce result
    return [result]

In the next step, you can create the binding between the inference callable and Triton Inference Server using the bind method from pyTriton. This method takes the model name, the inference callable, the inputs and outputs tensors, and an optional model configuration object.

.. code-block:: python

from pytriton.model_config import Tensor
from pytriton.triton import Triton
triton = Triton()
triton.bind(
    model_name="Linear",
    infer_func=infer_fn,
    inputs=[Tensor(name="data", dtype=np.float32, shape=(-1,)),],
    outputs=[Tensor(name="result", dtype=np.float32, shape=(-1,)),],
)
triton.run()

Finally, you can send an inference query to the model using the ModelClient class. The infer_sample method takes the input data as a numpy array and returns the output data as a numpy array. You can learn more about the ModelClient class in the clients <https://triton-inference-server.github.io/pytriton/latest/clients/>_ section.

.. code-block:: python

from pytriton.client import ModelClient

client = ModelClient("localhost", "Linear")
data = np.array([1, 2, ], dtype=np.float32)
print(client.infer_sample(data=data))

After the inference is done, you can stop the Triton Inference Server and close the client:

.. code-block:: python

client.close()
triton.stop()

The output of the inference should be:

.. code-block:: python

{'result': array([-1., -2.], dtype=float32)}

For the full example, including defining the model and binding it to the Triton server, check out our detailed Quick Start <https://triton-inference-server.github.io/pytriton/latest/quick_start/>_ instructions. Get your model up and running, explore how to serve it, and learn how to invoke it from client applications <https://triton-inference-server.github.io/pytriton/latest/clients/>_.

The full example code can be found in examples/linear_random_pytorch <https://github.com/triton-inference-server/pytriton/tree/main/examples/linear_random_pytorch>_.

Examples

The examples <https://triton-inference-server.github.io/pytriton/latest/examples/>_ page showcases various use cases of serving models using PyTriton. This includes simple examples of running models in PyTorch, TensorFlow2, JAX, and plain Python. In addition, more advanced scenarios are covered, such as online learning, multi-node models, and deployment on Kubernetes using PyTriton. Each example is accompanied by instructions on how to build and run it. Discover more about utilizing PyTriton by exploring our examples.

  • Source <https://github.com/triton-inference-server/pytriton>_
  • Issues <https://github.com/triton-inference-server/pytriton/issues>_
  • Changelog <https://github.com/triton-inference-server/pytriton/blob/main/CHANGELOG.md>_
  • Known Issues <https://github.com/triton-inference-server/pytriton/blob/main/docs/known_issues.md>_
  • Contributing <https://github.com/triton-inference-server/pytriton/blob/main/CONTRIBUTING.md>_

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc