Security News
Research
Data Theft Repackaged: A Case Study in Malicious Wrapper Packages on npm
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
PyTriton - Flask/FastAPI-like interface to simplify Triton's deployment in Python environments.
.. Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
PyTriton - a Flask/FastAPI-like framework designed to streamline
the use of NVIDIA's Triton Inference Server <https://github.com/triton-inference-server>
_.
For comprehensive guidance on how to deploy your models, optimize performance,
and explore the API, delve into the extensive resources found in our
documentation <https://triton-inference-server.github.io/pytriton/>
_.
The distinct capabilities of PyTriton are summarized in the feature matrix:
+------------------------+--------------------------------------------------------------------------------------+
| Feature | Description |
+========================+======================================================================================+
| Native Python support | You can create any Python function <https://triton-inference-server.github.io/pytri | | | ton/latest/inference_callables/>
_ and expose it as an HTTP/gRPC API. |
+------------------------+--------------------------------------------------------------------------------------+
| Framework-agnostic | You can run any Python code with any framework of your choice, such as: PyTorch, |
| | TensorFlow, or JAX. |
+------------------------+--------------------------------------------------------------------------------------+
| Performance | You can benefit from dynamic batching <https://triton-inference-server.github.io/py | | optimization | triton/latest/inference_callables/decorators/#batch>
, response cache, model |
| | pipelining, clusters <https://triton-inference-server.github.io/pytriton/latest/ | | | guides/deploying_in_clusters/>
, performance tracing <https://triton-inference- | | | server.github.io/pytriton/latest/guides/distributed_tracing/>
, and GPU/CPU |
| | inference. |
+------------------------+--------------------------------------------------------------------------------------+
| Decorators | You can use batching decorators <https://triton-inference-server.github.io/pytriton | | | /latest/inference_callables/decorators/>
to handle batching and other |
| | pre-processing tasks for your inference function. |
+------------------------+--------------------------------------------------------------------------------------+
| Easy installation | You can use a simple and familiar interface based on Flask/FastAPI for easy | | <https://triton-infer | installation and
setup <https://triton-inference-server.github.io/pytriton/latest/b |
| ence-server.github.io/ | inding_models/>_. | | pytriton/latest/instal | | | lation/>
_ and setup | |
+------------------------+--------------------------------------------------------------------------------------+
| Model clients | You can access high-level model clients for HTTP/gRPC requests with configurable | | <https://triton-infer | options and both synchronous and
asynchronous <https://triton-inference-server.gith |
| ence-server.github.io/ | ub.io/pytriton/latest/clients/#asynciomodelclient>_ API. | | pytriton/latest/clien | | | ts>
_ | |
+------------------------+--------------------------------------------------------------------------------------+
| Streaming (alpha) | You can stream partial responses from a model by serving it in a decoupled mode | | | <https://triton-inference-server.github.io/pytriton/latest/clients/#decoupledmodelcl | | | ient>
_. |
+------------------------+--------------------------------------------------------------------------------------+
Learn more about PyTriton's architecture <https://triton-inference-server.github.io/pytriton/latest/#architecture>
_.
Before proceeding with the installation of PyTriton, ensure your system meets the following criteria:
2.35
or higher.
ldd --version
to verify your glibc version.3.8
or newer.20.3
or newer.libpython3.*.so
is installed, corresponding to your Python version.The PyTriton can be installed from pypi.org by running the following command::
pip install nvidia-pytriton
Important: The Triton Inference Server binary is installed as part of the PyTriton package.
Discover more about PyTriton's installation procedures <https://triton-inference-server.github.io/pytriton/latest/installation/>
, including Docker usage, prerequisites, and insights into building binaries from source <https://triton-inference-server.github.io/pytriton/latest/guides/building/>
to match your specific Triton server versions.
The quick start presents how to run Python model in Triton Inference Server without need to change the current working
environment. In the example we are using a simple Linear
model.
The infer_fn
is a function that takes an data
tensor and returns a list with single output tensor. The @batch
from batching decorators <https://triton-inference-server.github.io/pytriton/latest/inference_callables/decorators/>
_ is used to handle batching for the model.
.. code-block:: python
import numpy as np
from pytriton.decorators import batch
@batch
def infer_fn(data):
result = data * np.array([[-1]], dtype=np.float32) # Process inputs and produce result
return [result]
In the next step, you can create the binding between the inference callable and Triton Inference Server using the bind
method from pyTriton. This method takes the model name, the inference callable, the inputs and outputs tensors, and an optional model configuration object.
.. code-block:: python
from pytriton.model_config import Tensor
from pytriton.triton import Triton
triton = Triton()
triton.bind(
model_name="Linear",
infer_func=infer_fn,
inputs=[Tensor(name="data", dtype=np.float32, shape=(-1,)),],
outputs=[Tensor(name="result", dtype=np.float32, shape=(-1,)),],
)
triton.run()
Finally, you can send an inference query to the model using the ModelClient
class. The infer_sample
method takes the input data as a numpy array and returns the output data as a numpy array. You can learn more about the ModelClient
class in the clients <https://triton-inference-server.github.io/pytriton/latest/clients/>
_ section.
.. code-block:: python
from pytriton.client import ModelClient
client = ModelClient("localhost", "Linear")
data = np.array([1, 2, ], dtype=np.float32)
print(client.infer_sample(data=data))
After the inference is done, you can stop the Triton Inference Server and close the client:
.. code-block:: python
client.close()
triton.stop()
The output of the inference should be:
.. code-block:: python
{'result': array([-1., -2.], dtype=float32)}
For the full example, including defining the model and binding it to the Triton server, check out our detailed Quick Start <https://triton-inference-server.github.io/pytriton/latest/quick_start/>
_ instructions. Get your model up and running, explore how to serve it, and learn how to invoke it from client applications <https://triton-inference-server.github.io/pytriton/latest/clients/>
_.
The full example code can be found in examples/linear_random_pytorch <https://github.com/triton-inference-server/pytriton/tree/main/examples/linear_random_pytorch>
_.
The examples <https://triton-inference-server.github.io/pytriton/latest/examples/>
_ page showcases various use cases of serving models using PyTriton. This includes simple examples of running models in PyTorch, TensorFlow2, JAX, and plain Python. In addition, more advanced scenarios are covered, such as online learning, multi-node models, and deployment on Kubernetes using PyTriton. Each example is accompanied by instructions on how to build and run it. Discover more about utilizing PyTriton by exploring our examples.
Source <https://github.com/triton-inference-server/pytriton>
_Issues <https://github.com/triton-inference-server/pytriton/issues>
_Changelog <https://github.com/triton-inference-server/pytriton/blob/main/CHANGELOG.md>
_Known Issues <https://github.com/triton-inference-server/pytriton/blob/main/docs/known_issues.md>
_Contributing <https://github.com/triton-inference-server/pytriton/blob/main/CONTRIBUTING.md>
_FAQs
PyTriton - Flask/FastAPI-like interface to simplify Triton's deployment in Python environments.
We found that nvidia-pytriton demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Research
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
Research
Security News
Attackers used a malicious npm package typosquatting a popular ESLint plugin to steal sensitive data, execute commands, and exploit developer systems.
Security News
The Ultralytics' PyPI Package was compromised four times in one weekend through GitHub Actions cache poisoning and failure to rotate previously compromised API tokens.