Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

openinference-instrumentation-llama-index

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

openinference-instrumentation-llama-index

OpenInference LlamaIndex Instrumentation

  • 3.1.0
  • PyPI
  • Socket score

Maintainers
1

OpenInference LlamaIndex Instrumentation

Python auto-instrumentation library for LlamaIndex.

These traces are fully OpenTelemetry compatible and can be sent to an OpenTelemetry collector for viewing, such as arize-phoenix.

pypi

Installation

pip install openinference-instrumentation-llama-index

Compatibility

llama-index versionopeninference-instrumentation-llama-index version
>=0.11.0>=3.0
>=0.10.43>=2.0, <3.0
>=0.10.0, <0.10.43>=1.0, <0.2
>=0.9.14, <0.10.00.1.3

Quickstart

Install packages needed for this demonstration.

python -m pip install --upgrade \
    openinference-instrumentation-llama-index \
    opentelemetry-sdk \
    opentelemetry-exporter-otlp \
    "opentelemetry-proto>=1.12.0" \
    arize-phoenix

Start the Phoenix app in the background as a collector. By default, it listens on http://localhost:6006. You can visit the app via a browser at the same address.

The Phoenix app does not send data over the internet. It only operates locally on your machine.

python -m phoenix.server.main serve

The following Python code sets up the LlamaIndexInstrumentor to trace llama-index and send the traces to Phoenix at the endpoint shown below.

from openinference.instrumentation.llama_index import LlamaIndexInstrumentor
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
from opentelemetry.sdk import trace as trace_sdk
from opentelemetry.sdk.trace.export import SimpleSpanProcessor

endpoint = "http://127.0.0.1:6006/v1/traces"
tracer_provider = trace_sdk.TracerProvider()
tracer_provider.add_span_processor(SimpleSpanProcessor(OTLPSpanExporter(endpoint)))

LlamaIndexInstrumentor().instrument(tracer_provider=tracer_provider)

To demonstrate tracing, we'll use LlamaIndex below to query a document.

First, download a text file.

import tempfile
from urllib.request import urlretrieve
from llama_index.core import SimpleDirectoryReader

url = "https://raw.githubusercontent.com/Arize-ai/phoenix-assets/main/data/paul_graham/paul_graham_essay.txt"
with tempfile.NamedTemporaryFile() as tf:
    urlretrieve(url, tf.name)
    documents = SimpleDirectoryReader(input_files=[tf.name]).load_data()

Next, we'll query using OpenAI. To do that you need to set up your OpenAI API key in an environment variable.

import os

os.environ["OPENAI_API_KEY"] = "<your openai key>"

Now we can query the indexed documents.

from llama_index.core import VectorStoreIndex

query_engine = VectorStoreIndex.from_documents(documents).as_query_engine()
print(query_engine.query("What did the author do growing up?"))

Visit the Phoenix app at http://localhost:6006 to see the traces.

More Info

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc