Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

py2ls

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

py2ls

py(thon)2(too)ls

  • 0.2.4.29
  • PyPI
  • Socket score

Maintainers
1

Install

pip install py2ls

ips

listdir, basename, dirname, newfolder, finfo

e.g.,

fpath = "....../"
ips.listdir(fpath, kind='pdf', sort_by="size", ascending=0, output = 'df')

it filters the ‘.pdf’ files, and sort by the (file-size/name, length of name, create_time, mod_time, last_open_time …) it returns a DataFrame or BoxList (setting by ‘output’)

dir_data, dir_fig = newfolder(fpath, {'data', 'fig'}) # create folder
finfo(fpath) # get info: size, creation time, mod time, parent_path, fname, kind...
dir_lib(lib_of_interest) # get the fpath

list_func/func_list (same)

list functions in a package

fload, fsave, figsave

e.g.,

fload(fpath, kind=None, **kwargs)

load file (docx, pdf, image, md, json,csv,txt, html, yaml, xml, xlsx…) or save file.

# figsave, as used in matlab. 
figsave(dir_save, "fname.pdf", dpi=300)

pdf2img, img2pdf, docx2pdf

extract images from a PDF, or merge images into a pdf file

pdf2img(dir_pdf, dir_save=None, page=None, kind="png",verbose=True, **kws)
pdf2img(fpath, page=[None, None])  # means extract all pages
# processing page: 1
# processing page: 2
# processing page: 3
# processing page: 4
# processing page: 5

img2pdf(dir_img, kind="jpeg",page=None, dir_save=None, page_size="a4", dpi=300)
docx2pdf(dir_docx, dir_save) # convert docx to pdf

paper_size

quickly get the size info

paper_size('a4') # [210, 297]
paper_size('card') # [85.6, 53.98]

str2num, num2str, str2list

str2num(“123.345 dollers”,2)# => 123.35 (float) 
str2list("abcd") # ['a','b','c','d']
list2str(['a','b','c','d']) # 'abcd'

ssplit, sreplace

sreplace(text, dict_replace=None, robust=True)
ssplit(text, by="space", verbose=False, **kws) # by = "word", "sentence", ", ","num_strings","digital".....,"length", "upper followed lower", "lower followed upper"
text = "The most pronounced physiological changes in sleep occur in the brain.[10] The brain uses significantly less energy during sleep than it does when awake, especially during non-REM sleep. In areas with reduced activity, the brain restores its supply of adenosine triphosphate (ATP), the molecule used for short-term storage and transport of energy.[11] In quiet waking, the brain is responsible for 20% of the body's energy use, thus this reduction has a noticeable effect on overall energy consumption.[12]"
ssplit(text, by=["[10]", "[11]", "[12]"])
# ['The most pronounced physiological changes in sleep occur in the brain.',
# ' The brain uses significantly less energy during sleep than it does when awake, especially during non-REM sleep. In areas with reduced activity, the brain restores its supply of adenosine triphosphate (ATP), the molecule used for short-term storage and transport of energy.',
# " In quiet waking, the brain is responsible for 20% of the body's energy use, thus this reduction has a noticeable effect on overall energy consumption.",
 # '']
ssplit(text[:30], by="len", length=5)
# ['The m', 'ost p', 'ronou', 'nced ', 'physi', 'ologi']
ssplit(text, by="non_alphanumeric")
# ['The most pronounced physiological changes in sleep occur in the brain.[',
#  '10',
#  '] The brain uses significantly less energy during sleep than it does when awake, especially during non-REM sleep. In areas with reduced activity, the brain restores its supply of adenosine triphosphate (ATP), the molecule used for short-term storage and transport of energy.[',
#  '11',
#  '] In quiet waking, the brain is responsible for ',
#  '20',
#  "% of the body's energy use, thus this reduction has a noticeable effect on overall energy consumption.[",
#  '12',
#  ']']
ssplit(text, by="sent")
#['The most pronounced physiological changes in sleep occur in the brain.',
 #'[10] The brain uses significantly less energy during sleep than it does when awake, especially during non-REM sleep.',
 #'In areas with reduced activity, the brain restores its supply of adenosine triphosphate (ATP), the molecule used for short-term storage and transport of energy.',
 #"[11] In quiet waking, the brain is responsible for 20% of the body's energy use, thus this reduction has a noticeable effect on overall energy consumption.",
 #'[12]']
ssplit(text, by="lowup")
# ["The most pronounced physiological changes in sleep occur in the brain.[10] The brain uses significantly less energy during sleep than it does when awake, especially during non-REM sleep. In areas with reduced activity, the brain restores its supply of adenosine triphosphate (ATP), the molecule used for short-term storage and transport of energy.[11] In quiet waking, the brain is responsible for 20% of the body's energy use, thus this reduction has a noticeable effect on overall energy consumption.[12]"]

sreplace(text, dict_replace=None, robust=True)
text= 'The most pronounced physiological changes in sleep occur in the brain.[10] '
 'The brain uses significantly less energy during sleep than it does when '
 'awake, especially during non-REM sleep. In areas with reduced activity, the '
 'brain restores its supply of adenosine triphosphate (ATP), the molecule used '
 'for short-term storage and transport of energy.[11] In quiet waking, the '
 "brain is responsible for 20% of the body's energy use, thus this reduction "
 'has a noticeable effect on overall energy consumption.[12]'
sreplace(text)
"The most pronounced physiological changes in sleep occur in the brain"
sreplace(text,{"sleep":"wakewake"}) # sreplace(text,dict(sleep="wakewake"))
"The most pronounced physiological changes in wakewake occur in the brain."

stats

FuncCmpt ( two groups cmp)
FuncCmpt(X1, X2, pmc='auto', pair='unpaired')
e.g., 
X1 = [19, 22, 16, 29, 24]
X2 = [20, 11, 17, 12, 22]
p, res = FumcCmpt(X1,X2, pmc='pmc', pair = 'unpair')
# normally distributed
# normally distributed
# unpaired t text
# t(8) = 1.81117, p=0.1077
p,res = FuncCmpt(x1,x2, pmc='pmc',pair='pair')
# paired t test
# t(4)=1.55556,p=0.19479
FuncMultiCmpt ( multiple groups cmp)
FuncMultiCmpt(pmc='pmc', pair='unpair', data=None, dv=None, factor=None,
                  ss_type=2, detailed=True, effsize='np2',
                  correction='auto', between=None, within=None,
                  subject=None, group=None
                  )
df = pd.DataFrame({'score': [64, 66, 68, 75, 78, 94, 98, 79, 71, 80,
                             91, 92, 93, 90, 97, 94, 82, 88, 95, 96,
                             79, 78, 88, 94, 92, 85, 83, 85, 82, 81],
                   'group': np.repeat(['strat1', 'strat2', 'strat3'],repeats=10)})
res = FuncMultiCmpt(pmc='auto',pair='unpaired',data=df, dv='score', factor='group', group='group')
res["APA"] 
# ['group:F(2, 17)=9.71719,p=0.0016']
FuncStars
FuncStars(ax,
              pval=None,
              Ylim=None,
              Xlim=None,
              symbol='*',
              yscale=0.95,
              x1=0,
              x2=1,
              alpha=0.05,
              fontsize=14,
              fontsize_note=6,
              rotation=0,
              fontname='Arial',
              values_below=None,
              linego=True,
              linestyle='-',
              linecolor='k',
              linewidth=.8,
              nsshow='off',
              symbolcolor='k',
              tailindicator=[0.06, 0.06],
              report=None,
              report_scale=-0.1,
              report_loc=None)



plots

stdshade
stdshade(ax=None,*args, **kwargs)
add_colorbar
add_colorbar(im, width=None, pad=None, **kwargs)
get_color
get_color(n=1, cmap='auto')
get_color(12)
# ['#474747',
#  '#FF2C00',
#  '#0C5DA5',
#  '#845B97',
#  '#58BBCC',
#  '#FF9500',
#  '#D57DBE',
#  '#474747',
#  '#FF2C00',
#  '#0C5DA5',
#  '#845B97',
#  '#58BBCC']
get_color(5, cmap="jet") # ['#000080', '#000084', '#000089', '#00008d', '#000092']
get_color(5,cmap="rainbow") #['#8000ff', '#7e03ff', '#7c06ff', '#7a09ff', '#780dff']
img appearance
imgsets
imgsets(
    img,
    sets=None,
    show=True,
    show_axis=False,
    size=None,
    dpi=100,
    figsize=None,
    auto=False,
    filter_kws=None,
)
img = imgsets(
    fpath,
    sets={"rota": -5, "sharp": 10},
    dpi=200,
    # show_axis=True,
)
figsave(dir_save, "test1_sharp.pdf")


img2 = imgsets(
    fpath,
    sets={"rota": -5, "crop": [100, 100, 300, 400], "sharp": 10},
    dpi=200,
    filter_kws={
        "sharpen": 10,
    },
    # show_axis=True,
)
figsave(dir_save, "test2_crop.pdf")
fload(dir_img)

image-20240613233304196

imgsets(img, sets={"color": 1.5}, show=0)

image-20240613233356996

imgsets(img, sets={"pad": (300, 300), "bgcolor": (73, 162, 127)}, show=0)

image-20240613233423144

imgsets(
    img,
    sets={"contrast": 1.3, "color": 1.5, "pad": (300, 300)},
    show=0,
    filter_kws=dict(sh=1050, EDG=10, gaus=5),
)

image-20240613233503718

imgsets(
    img,
    sets={"color": 10.5},
    show=0,
    filter_kws=dict(EDGE_ENHANCE=50, EDGE_NHANCEmore=50),
)

image-20240613233525291

imgsets(
    img,
    sets=dict(contr=1.5, rm="default"),
    show=0,
    # filter_kws=dict(sharp=1),
)

image-20240613233554225

imgsets(
    img,
    sets=dict(contr=0, rm="default"),
    show=0,
    filter_kws=dict(sharp=1),
)

image-20240613233611627

figsets
figsets(*args)
cm = 1 / 2.54
# plt.style.use("paper")
plt.figure(figsize=[8 * cm, 5 * cm])
for i in range(2, 4):
    plt.plot(x, y * i, ls="-")
figsets(
    plt.gca(),
    {
        "xlabel": f"time([{x[0]}:{x[-1]}])",
        "ylabel": "Amplitude (signals)",
        # "titel": "paper",
        "xlim": [0, 600],
        "xtick": np.arange(0, 620, 150),
        "xlabel": "test xticklabel",
        # "ylim": [-2.5, 2.5],
        "sp": "go",
        # "style": "paper",
        "box": ":",
        "grid": "on",
        "minorticks": "on",
        "ticks": {"c": "k"},
    },
)
figsets('style','paper')
cm = 1/2.54  # centimeters in inches
fig, ax = plt.subplots(1, 1, figsize=(7*cm, 5*cm))
x = np.linspace(0, 2 * np.pi, 50) * 100
y = np.sin(x)
c=get_color(7)

for i in range(2,7):
    plt.plot(x, y*i,c=c[i])
figsets(
    ax,
    {
        "xlim": [0, 450],
        # "ylim": [-1.5, 1.5],
        "xlabel": "2222",
        # "style":"paper",
        "yticks": np.arange(-5,5, 2),
        "ylabel": "ylabelsssss",
        "xtkbel": range(0, 800, 100),
        # "spine": 5,
        "suptitle": "supertitle",
        # "minorticks": "y",
        # "ticksloc":"lt",
        # "ticks": {"direction": "out",'c':'b'},
        "rotation":45,
        # 'box':"lt",
        # "labellocation":'r',
        # "ax_color":'b',
        # 'grid':{"which":'minor','lw':1,"ls":'-.','c':'b','al':0.3},
    },
)

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc