Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

pyqir

Package Overview
Dependencies
Maintainers
3
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

pyqir

PyQIR parses, generates and evaluates the Quantum Intermediate Representation.

  • 0.10.6
  • PyPI
  • Socket score

Maintainers
3

PyQIR

The pyqir package provides the ability to generate QIR as well as an easy way to parse and analyze QIR.

QIR generation is intended to be used by code automating translation processes enabling the conversion in some format to QIR via Python; i.e., this is a low-level API intended to be used as a bridge to existing Python frameworks enabling the generation of QIR rather than directly consumed by an end-user. It is not intended to be used as a framework for algorithm and application development.

Installation

The package is released on PyPI and can be installed via pip:

pip install pyqir

Examples

PyQIR examples can be found in this repository's examples folder.

Generation

The following code creates QIR for a Bell pair before measuring each qubit and returning the result. The unoptimized QIR is displayed in the terminal when executed:

from pyqir import BasicQisBuilder, SimpleModule

module = SimpleModule("Bell", num_qubits=2, num_results=2)
qis = BasicQisBuilder(module.builder)

qis.h(module.qubits[0])
qis.cx(module.qubits[0], module.qubits[1])

qis.mz(module.qubits[0], module.results[0])
qis.mz(module.qubits[1], module.results[1])

print(module.ir())

The QIR output will look like:

; ModuleID = 'Bell'
source_filename = "Bell"

%Qubit = type opaque
%Result = type opaque

define void @main() #0 {
entry:
  call void @__quantum__qis__h__body(%Qubit* null)
  call void @__quantum__qis__cnot__body(%Qubit* null, %Qubit* inttoptr (i64 1 to %Qubit*))
  call void @__quantum__qis__mz__body(%Qubit* null, %Result* null)
  call void @__quantum__qis__mz__body(%Qubit* inttoptr (i64 1 to %Qubit*), %Result* inttoptr (i64 1 to %Result*))
  ret void
}

declare void @__quantum__qis__h__body(%Qubit*)

declare void @__quantum__qis__cnot__body(%Qubit*, %Qubit*)

declare void @__quantum__qis__mz__body(%Qubit*, %Result* writeonly) #1

attributes #0 = { "entry_point" "output_labeling_schema" "qir_profiles"="custom" "required_num_qubits"="2" "required_num_results"="2" }
attributes #1 = { "irreversible" }

!llvm.module.flags = !{!0, !1, !2, !3}

!0 = !{i32 1, !"qir_major_version", i32 1}
!1 = !{i32 7, !"qir_minor_version", i32 0}
!2 = !{i32 1, !"dynamic_qubit_management", i1 false}
!3 = !{i32 1, !"dynamic_result_management", i1 false}

Contributing

There are many ways in which you can contribute to PyQIR, whether by contributing a feature or by engaging in discussions; we value contributions in all shapes and sizes! We refer to this document for guidelines and ideas for how you can get involved.

Contributing a pull request to this repo requires to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. A CLA-bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately. Simply follow the instructions provided by the bot. You will only need to do this once.

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc