|query-exporter logo|
Export Prometheus metrics from SQL queries
|Latest Version| |Build Status| |Snap Package| |Docker Pulls|
query-exporter
is a Prometheus_ exporter which allows collecting metrics
from database queries, at specified time intervals.
It uses SQLAlchemy_ to connect to different database engines, including
PostgreSQL, MySQL, Oracle and Microsoft SQL Server.
Each query can be run on multiple databases, and update multiple metrics.
The application is simply run as::
query-exporter config.yaml
where the passed configuration file contains the definitions of the databases
to connect and queries to perform to update metrics.
Configuration file format
A sample configuration file for the application looks like this:
.. code:: yaml
databases:
db1:
dsn: sqlite://
connect-sql:
- PRAGMA application_id = 123
- PRAGMA auto_vacuum = 1
labels:
region: us1
app: app1
db2:
dsn: sqlite://
keep-connected: false
labels:
region: us2
app: app1
metrics:
metric1:
type: gauge
description: A sample gauge
metric2:
type: summary
description: A sample summary
labels: [l1, l2]
expiration: 24h
metric3:
type: histogram
description: A sample histogram
buckets: [10, 20, 50, 100, 1000]
metric4:
type: enum
description: A sample enum
states: [foo, bar, baz]
queries:
query1:
interval: 5
databases: [db1]
metrics: [metric1]
sql: SELECT random() / 1000000000000000 AS metric1
query2:
interval: 20
timeout: 0.5
databases: [db1, db2]
metrics: [metric2, metric3]
sql: |
SELECT abs(random() / 1000000000000000) AS metric2,
abs(random() / 10000000000000000) AS metric3,
"value1" AS l1,
"value2" AS l2
query3:
schedule: "*/5 * * * *"
databases: [db2]
metrics: [metric4]
sql: |
SELECT value FROM (
SELECT "foo" AS metric4 UNION
SELECT "bar" AS metric3 UNION
SELECT "baz" AS metric4
)
ORDER BY random()
LIMIT 1
databases
section
This section contains definitions for databases to connect to. Key names are
arbitrary and only used to reference databases in the ``queries`` section.
Each database definitions can have the following keys:
``dsn``:
database connection details.
It can be provided as a string in the following format::
dialect[+driver]://[username:password][@host:port]/database[?option=value&...]
(see `SQLAlchemy documentation`_ for details on available engines and
options), or as key/value pairs:
.. code:: yaml
dialect: <dialect>[+driver]
user: <username>
password: <password>
host: <host>
port: <port>
database: <database>
options:
<key1>: <value1>
<key2>: <value2>
All entries are optional, except ``dialect``.
Note that in the string form, username, password and options need to be
URL-encoded, whereas this is done automatically for the key/value form.
See `database-specific options`_ page for some extra details on database
configuration options.
It's also possible to get the connection string indirectly from other sources:
- from an environment variable (e.g. ``$CONNECTION_STRING``) by setting ``dsn`` to::
env:CONNECTION_STRING
- from a file, containing only the DSN value, by setting ``dsn`` to::
file:/path/to/file
These forms only support specifying the actual DNS in the string form.
``connect-sql``:
An optional list of queries to run right after database connection. This can
be used to set up connection-wise parameters and configurations.
``keep-connected``:
whether to keep the connection open for the database between queries, or
disconnect after each one. If not specified, defaults to ``true``. Setting
this option to ``false`` might be useful if queries on a database are run
with very long interval, to avoid holding idle connections.
``autocommit``:
whether to set autocommit for the database connection. If not specified,
defaults to ``true``. This should only be changed to ``false`` if specific
queries require it.
``labels``:
an optional mapping of label names and values to tag metrics collected from each database.
When labels are used, all databases must define the same set of labels.
``metrics`` section
~~~~~~~~~~~~~~~~~~~
This section contains Prometheus_ metrics definitions. Keys are used as metric
names, and must therefore be valid metric identifiers.
Each metric definition can have the following keys:
``type``:
the type of the metric, must be specified. The following metric types are
supported:
- ``counter``: value is incremented with each result from queries
- ``enum``: value is set with each result from queries
- ``gauge``: value is set with each result from queries
- ``histogram``: each result from queries is added to observations
- ``summary``: each result from queries is added to observations
``description``:
an optional description of the metric.
``labels``:
an optional list of label names to apply to the metric.
If specified, queries updating the metric must return rows that include
values for each label in addition to the metric value. Column names must
match metric and labels names.
``buckets``:
for ``histogram`` metrics, a list of buckets for the metrics.
If not specified, default buckets are applied.
``states``:
for ``enum`` metrics, a list of string values for possible states.
Queries for updating the enum must return valid states.
``expiration``:
the amount of time after which a series for the metric is cleared if no new
value is collected.
Last report times are tracked independently for each set of label values for
the metric.
This can be useful for metric series that only last for a certain amount of
time, to avoid an ever-increasing collection of series.
The value is interpreted as seconds if no suffix is specified; valid suffixes
are ``s``, ``m``, ``h``, ``d``. Only integer values are accepted.
``increment``:
for ``counter`` metrics, whether to increment the value by the query result,
or set the value to it.
By default, counters are incremented by the value returned by the query. If
this is set to ``false``, instead, the metric value will be set to the result
of the query.
**NOTE**: The default will be reversed in the 3.0 release, and ``increment``
will be set to ``false`` by default.
``queries`` section
~~~~~~~~~~~~~~~~~~~
This section contains definitions for queries to perform. Key names are
arbitrary and only used to identify queries in logs.
Each query definition can have the following keys:
``databases``:
the list of databases to run the query on.
Names must match those defined in the ``databases`` section.
Metrics are automatically tagged with the ``database`` label so that
independent series are generated for each database that a query is run on.
``interval``:
the time interval at which the query is run.
The value is interpreted as seconds if no suffix is specified; valid suffixes
are ``s``, ``m``, ``h``, ``d``. Only integer values are accepted.
If a value is specified for ``interval``, a ``schedule`` can't be specified.
If no value is specified (or specified as ``null``), the query is only
executed upon HTTP requests.
``metrics``:
the list of metrics that the query updates.
Names must match those defined in the ``metrics`` section.
``parameters``:
an optional list or dictionary of parameters sets to run the query with.
If specified as a list, the query will be run once for every set of
parameters specified in this list, for every interval.
Each parameter set must be a dictionary where keys must match parameters
names from the query SQL (e.g. ``:param``).
As an example:
.. code:: yaml
query:
databases: [db]
metrics: [metric]
sql: |
SELECT COUNT(*) AS metric FROM table
WHERE id > :param1 AND id < :param2
parameters:
- param1: 10
param2: 20
- param1: 30
param2: 40
If specified as a dictionary, it's used as a multidimensional matrix of
parameters lists to run the query with.
The query will be run once for each permutation of parameters.
If a query is specified with parameters as matrix in its ``sql``, it will be run once
for every permutation in matrix of parameters, for every interval.
Variable format in sql query: ``:{top_level_key}__{inner_key}``
.. code:: yaml
query:
databases: [db]
metrics: [apps_count]
sql: |
SELECT COUNT(1) AS apps_count FROM apps_list
WHERE os = :os__name AND arch = :os__arch AND lang = :lang__name
parameters:
os:
- name: MacOS
arch: arm64
- name: Linux
arch: amd64
- name: Windows
arch: amd64
lang:
- name: Python3
- name: Java
- name: TypeScript
This example will generate 9 queries with all permutations of ``os`` and
``lang`` parameters.
``schedule``:
a schedule for executing queries at specific times.
This is expressed as a Cron-like format string (e.g. ``*/5 * * * *`` to run
every five minutes).
If a value is specified for ``schedule``, an ``interval`` can't be specified.
If no value is specified (or specified as ``null``), the query is only
executed upon HTTP requests.
``sql``:
the SQL text of the query.
The query must return columns with names that match those of the metrics
defined in ``metrics``, plus those of labels (if any) for all these metrics.
.. code:: yaml
query:
databases: [db]
metrics: [metric1, metric2]
sql: SELECT 10.0 AS metric1, 20.0 AS metric2
will update ``metric1`` to ``10.0`` and ``metric2`` to ``20.0``.
**Note**:
since ``:`` is used for parameter markers (see ``parameters`` above),
literal single ``:`` at the beginning of a word must be escaped with
backslash (e.g. ``SELECT '\:bar' FROM table``). There's no need to escape
when the colon occurs inside a word (e.g. ``SELECT 'foo:bar' FROM table``).
``timeout``:
a value in seconds after which the query is timed out.
If specified, it must be a multiple of 0.1.
Metrics endpoint
----------------
The exporter listens on port ``9560`` providing the standard ``/metrics``
endpoint.
By default, the port is bound on ``localhost``. Note that if the name resolves
both IPv4 and IPv6 addressses, the exporter will bind on both.
For the configuration above, the endpoint would return something like this::
# HELP database_errors_total Number of database errors
# TYPE database_errors_total counter
# HELP queries_total Number of database queries
# TYPE queries_total counter
queries_total{app="app1",database="db1",query="query1",region="us1",status="success"} 50.0
queries_total{app="app1",database="db2",query="query2",region="us2",status="success"} 13.0
queries_total{app="app1",database="db1",query="query2",region="us1",status="success"} 13.0
queries_total{app="app1",database="db2",query="query3",region="us2",status="error"} 1.0
# HELP queries_created Number of database queries
# TYPE queries_created gauge
queries_created{app="app1",database="db1",query="query1",region="us1",status="success"} 1.5945442444463024e+09
queries_created{app="app1",database="db2",query="query2",region="us2",status="success"} 1.5945442444471517e+09
queries_created{app="app1",database="db1",query="query2",region="us1",status="success"} 1.5945442444477117e+09
queries_created{app="app1",database="db2",query="query3",region="us2",status="error"} 1.5945444000140696e+09
# HELP query_latency Query execution latency
# TYPE query_latency histogram
query_latency_bucket{app="app1",database="db1",le="0.005",query="query1",region="us1"} 50.0
query_latency_bucket{app="app1",database="db1",le="0.01",query="query1",region="us1"} 50.0
query_latency_bucket{app="app1",database="db1",le="0.025",query="query1",region="us1"} 50.0
query_latency_bucket{app="app1",database="db1",le="0.05",query="query1",region="us1"} 50.0
query_latency_bucket{app="app1",database="db1",le="0.075",query="query1",region="us1"} 50.0
query_latency_bucket{app="app1",database="db1",le="0.1",query="query1",region="us1"} 50.0
query_latency_bucket{app="app1",database="db1",le="0.25",query="query1",region="us1"} 50.0
query_latency_bucket{app="app1",database="db1",le="0.5",query="query1",region="us1"} 50.0
query_latency_bucket{app="app1",database="db1",le="0.75",query="query1",region="us1"} 50.0
query_latency_bucket{app="app1",database="db1",le="1.0",query="query1",region="us1"} 50.0
query_latency_bucket{app="app1",database="db1",le="2.5",query="query1",region="us1"} 50.0
query_latency_bucket{app="app1",database="db1",le="5.0",query="query1",region="us1"} 50.0
query_latency_bucket{app="app1",database="db1",le="7.5",query="query1",region="us1"} 50.0
query_latency_bucket{app="app1",database="db1",le="10.0",query="query1",region="us1"} 50.0
query_latency_bucket{app="app1",database="db1",le="+Inf",query="query1",region="us1"} 50.0
query_latency_count{app="app1",database="db1",query="query1",region="us1"} 50.0
query_latency_sum{app="app1",database="db1",query="query1",region="us1"} 0.004666365042794496
query_latency_bucket{app="app1",database="db2",le="0.005",query="query2",region="us2"} 13.0
query_latency_bucket{app="app1",database="db2",le="0.01",query="query2",region="us2"} 13.0
query_latency_bucket{app="app1",database="db2",le="0.025",query="query2",region="us2"} 13.0
query_latency_bucket{app="app1",database="db2",le="0.05",query="query2",region="us2"} 13.0
query_latency_bucket{app="app1",database="db2",le="0.075",query="query2",region="us2"} 13.0
query_latency_bucket{app="app1",database="db2",le="0.1",query="query2",region="us2"} 13.0
query_latency_bucket{app="app1",database="db2",le="0.25",query="query2",region="us2"} 13.0
query_latency_bucket{app="app1",database="db2",le="0.5",query="query2",region="us2"} 13.0
query_latency_bucket{app="app1",database="db2",le="0.75",query="query2",region="us2"} 13.0
query_latency_bucket{app="app1",database="db2",le="1.0",query="query2",region="us2"} 13.0
query_latency_bucket{app="app1",database="db2",le="2.5",query="query2",region="us2"} 13.0
query_latency_bucket{app="app1",database="db2",le="5.0",query="query2",region="us2"} 13.0
query_latency_bucket{app="app1",database="db2",le="7.5",query="query2",region="us2"} 13.0
query_latency_bucket{app="app1",database="db2",le="10.0",query="query2",region="us2"} 13.0
query_latency_bucket{app="app1",database="db2",le="+Inf",query="query2",region="us2"} 13.0
query_latency_count{app="app1",database="db2",query="query2",region="us2"} 13.0
query_latency_sum{app="app1",database="db2",query="query2",region="us2"} 0.012369773990940303
query_latency_bucket{app="app1",database="db1",le="0.005",query="query2",region="us1"} 13.0
query_latency_bucket{app="app1",database="db1",le="0.01",query="query2",region="us1"} 13.0
query_latency_bucket{app="app1",database="db1",le="0.025",query="query2",region="us1"} 13.0
query_latency_bucket{app="app1",database="db1",le="0.05",query="query2",region="us1"} 13.0
query_latency_bucket{app="app1",database="db1",le="0.075",query="query2",region="us1"} 13.0
query_latency_bucket{app="app1",database="db1",le="0.1",query="query2",region="us1"} 13.0
query_latency_bucket{app="app1",database="db1",le="0.25",query="query2",region="us1"} 13.0
query_latency_bucket{app="app1",database="db1",le="0.5",query="query2",region="us1"} 13.0
query_latency_bucket{app="app1",database="db1",le="0.75",query="query2",region="us1"} 13.0
query_latency_bucket{app="app1",database="db1",le="1.0",query="query2",region="us1"} 13.0
query_latency_bucket{app="app1",database="db1",le="2.5",query="query2",region="us1"} 13.0
query_latency_bucket{app="app1",database="db1",le="5.0",query="query2",region="us1"} 13.0
query_latency_bucket{app="app1",database="db1",le="7.5",query="query2",region="us1"} 13.0
query_latency_bucket{app="app1",database="db1",le="10.0",query="query2",region="us1"} 13.0
query_latency_bucket{app="app1",database="db1",le="+Inf",query="query2",region="us1"} 13.0
query_latency_count{app="app1",database="db1",query="query2",region="us1"} 13.0
query_latency_sum{app="app1",database="db1",query="query2",region="us1"} 0.004745393933262676
# HELP query_latency_created Query execution latency
# TYPE query_latency_created gauge
query_latency_created{app="app1",database="db1",query="query1",region="us1"} 1.594544244446163e+09
query_latency_created{app="app1",database="db2",query="query2",region="us2"} 1.5945442444470239e+09
query_latency_created{app="app1",database="db1",query="query2",region="us1"} 1.594544244447551e+09
# HELP query_timestamp Query last execution timestamp
# TYPE query_timestamp gauge
query_timestamp{app="app1",database="db2",query="query2",region="us2"} 1.594544244446199e+09
query_timestamp{app="app1",database="db1",query="query1",region="us1"} 1.594544244452181e+09
query_timestamp{app="app1",database="db1",query="query2",region="us1"} 1.594544244481839e+09
# HELP metric1 A sample gauge
# TYPE metric1 gauge
metric1{app="app1",database="db1",region="us1"} -3561.0
# HELP metric2 A sample summary
# TYPE metric2 summary
metric2_count{app="app1",database="db2",l1="value1",l2="value2",region="us2"} 13.0
metric2_sum{app="app1",database="db2",l1="value1",l2="value2",region="us2"} 58504.0
metric2_count{app="app1",database="db1",l1="value1",l2="value2",region="us1"} 13.0
metric2_sum{app="app1",database="db1",l1="value1",l2="value2",region="us1"} 75262.0
# HELP metric2_created A sample summary
# TYPE metric2_created gauge
metric2_created{app="app1",database="db2",l1="value1",l2="value2",region="us2"} 1.594544244446819e+09
metric2_created{app="app1",database="db1",l1="value1",l2="value2",region="us1"} 1.594544244447339e+09
# HELP metric3 A sample histogram
# TYPE metric3 histogram
metric3_bucket{app="app1",database="db2",le="10.0",region="us2"} 1.0
metric3_bucket{app="app1",database="db2",le="20.0",region="us2"} 1.0
metric3_bucket{app="app1",database="db2",le="50.0",region="us2"} 2.0
metric3_bucket{app="app1",database="db2",le="100.0",region="us2"} 3.0
metric3_bucket{app="app1",database="db2",le="1000.0",region="us2"} 13.0
metric3_bucket{app="app1",database="db2",le="+Inf",region="us2"} 13.0
metric3_count{app="app1",database="db2",region="us2"} 13.0
metric3_sum{app="app1",database="db2",region="us2"} 5016.0
metric3_bucket{app="app1",database="db1",le="10.0",region="us1"} 0.0
metric3_bucket{app="app1",database="db1",le="20.0",region="us1"} 0.0
metric3_bucket{app="app1",database="db1",le="50.0",region="us1"} 0.0
metric3_bucket{app="app1",database="db1",le="100.0",region="us1"} 0.0
metric3_bucket{app="app1",database="db1",le="1000.0",region="us1"} 13.0
metric3_bucket{app="app1",database="db1",le="+Inf",region="us1"} 13.0
metric3_count{app="app1",database="db1",region="us1"} 13.0
metric3_sum{app="app1",database="db1",region="us1"} 5358.0
# HELP metric3_created A sample histogram
# TYPE metric3_created gauge
metric3_created{app="app1",database="db2",region="us2"} 1.5945442444469101e+09
metric3_created{app="app1",database="db1",region="us1"} 1.5945442444474254e+09
# HELP metric4 A sample enum
# TYPE metric4 gauge
metric4{app="app1",database="db2",metric4="foo",region="us2"} 0.0
metric4{app="app1",database="db2",metric4="bar",region="us2"} 0.0
metric4{app="app1",database="db2",metric4="baz",region="us2"} 1.0
Builtin metrics
---------------
The exporter provides a few builtin metrics which can be useful to track query execution:
``database_errors{database="db"}``:
a counter used to report number of errors, per database.
``queries{database="db",query="q",status="[success|error|timeout]"}``:
a counter with number of executed queries, per database, query and status.
``query_latency{database="db",query="q"}``:
a histogram with query latencies, per database and query.
``query_timestamp{database="db",query="q"}``:
a gauge with query last execution timestamps, per database and query.
In addition, metrics for resources usage for the exporter process can be
included by passing ``--process-stats`` in the command line.
Debugging / Logs
----------------
You can enable extended logging using the ``-L`` commandline switch. Possible
log levels are ``CRITICAL``, ``ERROR``, ``WARNING``, ``INFO``, ``DEBUG``.
Database engines
----------------
SQLAlchemy_ doesn't depend on specific Python database modules at
installation. This means additional modules might need to be installed for
engines in use. These can be installed as follows::
pip install SQLAlchemy[postgresql] SQLAlchemy[mysql] ...
based on which database engines are needed.
See `supported databases`_ for details.
Install from Snap
-----------------
|Get it from the Snap Store|
``query-exporter`` can be installed from `Snap Store`_ on systems where Snaps
are supported, via::
sudo snap install query-exporter
The snap provides both the ``query-exporter`` command and a daemon instance of
the command, managed via a Systemd service.
To configure the daemon:
- create or edit ``/var/snap/query-exporter/current/config.yaml`` with the
configuration
- run ``sudo snap restart query-exporter``
The snap has support for connecting the following databases:
- PostgreSQL (``postgresql://``)
- MySQL (``mysql://``)
- SQLite (``sqlite://``)
- Microsoft SQL Server (``mssql://``)
- IBM DB2 (``db2://``) on supported architectures (x86_64, ppc64le and
s390x)
Run in Docker
-------------
``query-exporter`` can be run inside Docker_ containers, and is available from
the `Docker Hub`_::
docker run --rm -it -p 9560:9560/tcp -v "$CONFIG_DIR:/config" adonato/query-exporter:latest
where ``$CONFIG_DIR`` is the absolute path of a directory containing a
``config.yaml`` file, the configuration file to use. Alternatively, a volume
name can be specified.
A different ODBC driver version to use can be specified during image building,
by passing ``--build-arg ODBC_bVERSION_NUMBER``, e.g.::
docker build . --build-arg ODBC_DRIVER_VERSION=17
The image has support for connecting the following databases:
- PostgreSQL (``postgresql://``)
- MySQL (``mysql://``)
- SQLite (``sqlite://``)
- Microsoft SQL Server (``mssql://``)
- IBM DB2 (``db2://``)
- Oracle (``oracle://``)
- ClickHouse (``clickhouse+native://``)
A `Helm chart`_ to run the container in Kubernetes is also available.
.. _Prometheus: https://prometheus.io/
.. _SQLAlchemy: https://www.sqlalchemy.org/
.. _`SQLAlchemy documentation`:
http://docs.sqlalchemy.org/en/latest/core/engines.html#database-urls
.. _`supported databases`:
http://docs.sqlalchemy.org/en/latest/core/engines.html#supported-databases
.. _`Snap Store`: https://snapcraft.io
.. _Docker: http://docker.com/
.. _`Docker Hub`: https://hub.docker.com/r/adonato/query-exporter
.. _`database-specific options`: databases.rst
.. _`Helm chart`: https://github.com/makezbs/helm-charts/tree/main/charts/query-exporter
.. |query-exporter logo| image:: https://raw.githubusercontent.com/albertodonato/query-exporter/main/logo.svg
:alt: query-exporter logo
.. |Latest Version| image:: https://img.shields.io/pypi/v/query-exporter.svg
:alt: Latest Version
:target: https://pypi.python.org/pypi/query-exporter
.. |Build Status| image:: https://github.com/albertodonato/query-exporter/workflows/CI/badge.svg
:alt: Build Status
:target: https://github.com/albertodonato/query-exporter/actions?query=workflow%3ACI
.. |Snap Package| image:: https://snapcraft.io/query-exporter/badge.svg
:alt: Snap Package
:target: https://snapcraft.io/query-exporter
.. |Get it from the Snap Store| image:: https://snapcraft.io/static/images/badges/en/snap-store-black.svg
:alt: Get it from the Snap Store
:target: https://snapcraft.io/query-exporter
.. |Docker Pulls| image:: https://img.shields.io/docker/pulls/adonato/query-exporter
:alt: Docker Pulls
:target: https://hub.docker.com/r/adonato/query-exporter