Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

serpyco-rs

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

serpyco-rs

  • 1.11.0
  • PyPI
  • Socket score

Maintainers
1

serpyco-rs: a serializer for python dataclasses

PyPI version Python
versions CI status

What is serpyco-rs ?

Serpyco is a serialization library for Python 3.9+ dataclasses that works just by defining your dataclasses:

import dataclasses
import serpyco_rs

@dataclasses.dataclass
class Example:
    name: str
    num: int
    tags: list[str]


serializer = serpyco_rs.Serializer(Example)

result = serializer.dump(Example(name="foo", num=2, tags=["hello", "world"]))
print(result)

>> {'name': 'foo', 'num': 2, 'tags': ['hello', 'world']}

Inspired by serpyco.

serpyco-rs works by analysing the dataclass fields and can recognize many types : list, tuple, Optional... You can also embed other dataclasses in a definition.

The main use-case for serpyco-rs is to serialize objects for an API, but it can be helpful whenever you need to transform objects to/from builtin Python types.

Installation

Use pip to install:

$ pip install serpyco-rs

Features

  • Serialization and deserialization of dataclasses
  • Validation of input data
  • Very fast
  • Support recursive schemas
  • Generate JSON Schema Specification (Draft 2020-12)
  • Support custom encoders/decoders for fields
  • Support deserialization from query string parameters (MultiDict like structures) with from string coercion

Supported field types

There is support for generic types from the standard typing module:

  • Decimal
  • UUID
  • Time
  • Date
  • DateTime
  • Enum
  • List
  • Dict
  • Bytes (pass through)
  • TypedDict
  • Mapping
  • Sequence
  • Tuple (fixed size)
  • Literal[str, int, Enum.variant, ...]
  • Unions / Tagged unions
  • typing.NewType

Benchmarks

Linux
Load
LibraryMedian latency (milliseconds)Operations per secondRelative (latency)
serpyco_rs0.166318.11
mashumaro0.452244.42.81
pydantic0.571753.93.56
serpyco0.821228.35.17
marshmallow8.49117.453.35
Dump
LibraryMedian latency (milliseconds)Operations per secondRelative (latency)
serpyco_rs0.07137981
serpyco0.07136221.02
mashumaro0.110219.51.36
pydantic0.224615.52.99
marshmallow249727.69
MacOS macOS Monterey / Apple M1 Pro / 16GB RAM / Python 3.11.0
Load
LibraryMedian latency (milliseconds)Operations per secondRelative (latency)
serpyco_rs0.19865.11
mashumaro0.249682
pydantic0.342866.73.42
serpyco0.691444.16.87
marshmallow4.14241.841.05
Dump
LibraryMedian latency (milliseconds)Operations per secondRelative (latency)
serpyco_rs0.0422602.61
serpyco0.0521232.91.06
mashumaro0.0615903.41.42
pydantic0.166262.63.61
marshmallow1.0496223.5

Supported annotations

serpyco-rs supports changing load/dump behavior with typing.Annotated.

Currently available:

  • Alias
  • FieldFormat (CamelCase / NoFormat)
  • NoneFormat (OmitNone / KeepNone)
  • Discriminator
  • Min / Max
  • MinLength / MaxLength
  • CustomEncoder
  • NoneAsDefaultForOptional (ForceDefaultForOptional)

Alias

Alias is needed to override the field name in the structure used for load / dump.

from dataclasses import dataclass
from typing import Annotated
from serpyco_rs import Serializer
from serpyco_rs.metadata import Alias

@dataclass
class A:
    foo: Annotated[int, Alias('bar')]

ser = Serializer(A)

print(ser.load({'bar': 1}))
>> A(foo=1)

print(ser.dump(A(foo=1)))
>> {'bar': 1}

FieldFormat

Used to have response bodies in camelCase while keeping your python code in snake_case.

from dataclasses import dataclass
from typing import Annotated
from serpyco_rs import Serializer
from serpyco_rs.metadata import CamelCase, NoFormat

@dataclass
class B:
    buz_filed: str

@dataclass
class A:
    foo_filed: int
    bar_filed: Annotated[B, NoFormat]

ser = Serializer(Annotated[A, CamelCase])  # or ser = Serializer(A, camelcase_fields=True)

print(ser.dump(A(foo_filed=1, bar_filed=B(buz_filed='123'))))
>> {'fooFiled': 1, 'barFiled': {'buz_filed': '123'}}

print(ser.load({'fooFiled': 1, 'barFiled': {'buz_filed': '123'}}))
>> A(foo_filed=1, bar_filed=B(buz_filed='123'))

NoneFormat

Via OmitNone we can drop None values for non required fields in the serialized dicts

from dataclasses import dataclass
from serpyco_rs import Serializer

@dataclass
class A:
    required_val: bool | None
    optional_val: bool | None = None

ser = Serializer(A, omit_none=True) # or Serializer(Annotated[A, OmitNone])

print(ser.dump(A(required_val=None, optional_val=None)))
>>> {'required_val': None}

Unions

serpyco-rs supports unions of types.

from dataclasses import dataclass
from serpyco_rs import Serializer

@dataclass
class Foo:
    val: int

ser = Serializer(Foo | int)

print(ser.load({'val': 1}))
>> Foo(val=1)
print(ser.load(1))
>> 1

But performance of unions is worse than for single dataclasses. Because we need to check all possible types in the union. For better performance, you can use Tagged unions.

Tagged unions

Supports tagged joins with discriminator field.

All classes in the union must be dataclasses or attrs with discriminator field Literal[str] or Literal[Enum.variant].

The discriminator field is always mandatory.

from typing import Annotated, Literal
from dataclasses import dataclass
from serpyco_rs import Serializer
from serpyco_rs.metadata import Discriminator

@dataclass
class Foo:
    type: Literal['foo']
    value: int

@dataclass(kw_only=True)
class Bar:
    type: Literal['bar'] = 'bar'
    value: str

ser = Serializer(list[Annotated[Foo | Bar, Discriminator('type')]])

print(ser.load([{'type': 'foo', 'value': 1}, {'type': 'bar', 'value': 'buz'}]))
>>> [Foo(type='foo', value=1), Bar(type='bar', value='buz')]

Min / Max

Supported for int / float / Decimal types and only for validation on load.

from typing import Annotated
from serpyco_rs import Serializer
from serpyco_rs.metadata import Min, Max

ser = Serializer(Annotated[int, Min(1), Max(10)])

ser.load(123)
>> SchemaValidationError: [ErrorItem(message='123 is greater than the maximum of 10', instance_path='')]

MinLength / MaxLength

MinLength / MaxLength can be used to restrict the length of loaded strings.

from typing import Annotated
from serpyco_rs import Serializer
from serpyco_rs.metadata import MinLength

ser = Serializer(Annotated[str, MinLength(5)])

ser.load("1234")
>> SchemaValidationError: [ErrorItem(message='"1234" is shorter than 5 characters', instance_path='')]

NoneAsDefaultForOptional

ForceDefaultForOptional / KeepDefaultForOptional can be used to set None as default value for optional (nullable) fields.

from dataclasses import dataclass
from serpyco_rs import Serializer


@dataclass
class Foo:
    val: int                 # not nullable + required
    val1: int | None         # nullable + required
    val2: int | None = None  # nullable + not required

ser_force_default = Serializer(Foo, force_default_for_optional=True)  # or Serializer(Annotated[Foo, ForceDefaultForOptional])
ser = Serializer(Foo)

# all fields except val are optional and nullable
assert ser_force_default.load({'val': 1}) == Foo(val=1, val1=None, val2=None) 

# val1 field is required and nullable and val1 should be present in the dict
ser.load({'val': 1})
>> SchemaValidationError: [ErrorItem(message='"val1" is a required property', instance_path='')]

Custom encoders for fields

You can provide CustomEncoder with serialize and deserialize functions, or serialize_with and deserialize_with annotations.

from typing import Annotated
from dataclasses import dataclass
from serpyco_rs import Serializer
from serpyco_rs.metadata import CustomEncoder

@dataclass
class Foo:
    val: Annotated[str, CustomEncoder[str, str](serialize=str.upper, deserialize=str.lower)]

ser = Serializer(Foo)
val = ser.dump(Foo(val='bar'))
>> {'val': 'BAR'}
assert ser.load(val) == Foo(val='bar') 

Note: CustomEncoder has no effect to validation and JSON Schema generation.

Bytes fields

serpyco-rs can loads bytes fields as is (without base64 encoding and validation).

from dataclasses import dataclass
from serpyco_rs import Serializer

@dataclass
class Foo:
    val: bytes

ser = Serializer(Foo)
ser.load({'val': b'123'}) == Foo(val=b'123')

Getting JSON Schema

serpyco-rs can generate JSON Schema for your dataclasses (Draft 2020-12).

from dataclasses import dataclass
from serpyco_rs import Serializer

@dataclass
class A:
    """Description of A"""
    foo: int
    bar: str

ser = Serializer(A)

print(ser.get_json_schema())
>> {
    '$schema': 'https://json-schema.org/draft/2020-12/schema', 
    '$ref': '#/components/schemas/A', 
    'components': {
        'schemas': {
            'A': {
                'properties': {
                    'foo': {'type': 'integer'}, 
                    'bar': {'type': 'string'}
                }, 
                'required': ['foo', 'bar'], 
                'type': 'object', 
                'description': 'Description of A'
            }
        }
    }
}

Also, you can configure the schema generation via JsonSchemaBuilder.

from dataclasses import dataclass
from serpyco_rs import Serializer, JsonSchemaBuilder

@dataclass
class A:
    foo: int
    bar: str

ser = Serializer(A)

builder = JsonSchemaBuilder(
  add_dialect_uri=False,
  ref_prefix='#/definitions',
)

print(builder.build(ser))
>> {'$ref': '#/definitions/__main__.A'}

print(builder.get_definitions())
>> {
  "__main__.A": {
    "properties": {
      "foo": {
        "type": "integer"
      },
      "bar": {
        "type": "string"
      }
    },
    "required": [
      "foo",
      "bar"
    ],
    "type": "object"
  }
}

Query string deserialization

serpyco-rs can deserialize query string parameters (MultiDict like structures) with from string coercion.


from dataclasses import dataclass
from urllib.parse import parse_qsl

from serpyco_rs import Serializer
from multidict import MultiDict

@dataclass
class A:
    foo: int
    bar: str

ser = Serializer(A)

print(ser.load_query_params(MultiDict(parse_qsl('foo=1&bar=2'))))
>> A(foo=1, bar='2')

Custom Type Support

In serpyco-rs, you can add support for your own types by using the custom_type_resolver parameter and the CustomType class. This allows you to define how your custom types should be serialized and deserialized.

CustomType

The CustomType class is a way to define how a custom type should be serialized and deserialized. It is a generic class that takes two type parameters: the type of the object to be serialized/deserialized and the type of the serialized/deserialized object.

Here is an example of a CustomType for IPv4Address:

from serpyco_rs import CustomType
from ipaddress import IPv4Address, AddressValueError

class IPv4AddressType(CustomType[IPv4Address, str]):
    def serialize(self, obj: IPv4Address) -> str:
        return str(obj)

    def deserialize(self, data: str) -> IPv4Address:
        try:
            return IPv4Address(data)
        except AddressValueError:
            raise ValueError(f"Invalid IPv4 address: {data}")

    def get_json_schema(self) -> dict:
        return {"type": "string", "format": "ipv4"}

In this example, IPv4AddressType is a CustomType that serializes IPv4Address objects to strings and deserializes strings to IPv4Address objects. The get_json_schema method returns the JSON schema for the custom type.

custom_type_resolver

The custom_type_resolver is a function that takes a type as input and returns an instance of CustomType if the type is supported, or None otherwise. This function is passed to the Serializer constructor.

Here is an example of a custom_type_resolver that supports IPv4Address:

def custom_type_resolver(t: type) -> CustomType | None
    if t is IPv4Address:
        return IPv4AddressType()
    return None

ser = Serializer(MyDataclass, custom_type_resolver=custom_type_resolver)

In this example, the custom_type_resolver function checks if the type is IPv4Address and returns an instance of IPv4AddressType if it is. Otherwise, it returns None. This function is then passed to the Serializer constructor, which uses it to handle IPv4Address fields in the dataclass.

Full Example

from dataclasses import dataclass
from ipaddress import IPv4Address
from serpyco_rs import Serializer, CustomType

# Define custom type for IPv4Address
class IPv4AddressType(CustomType[IPv4Address, str]):
    def serialize(self, value: IPv4Address) -> str:
        return str(value)

    def deserialize(self, value: str) -> IPv4Address:
        return IPv4Address(value)

    def get_json_schema(self):
        return {
            'type': 'string',
            'format': 'ipv4',
        }

# Defining custom_type_resolver
def custom_type_resolver(t: type) -> CustomType | None:
    if t is IPv4Address:
        return IPv4AddressType()
    return None

@dataclass
class Data:
    ip: IPv4Address

# Use custom_type_resolver in Serializer
serializer = Serializer(Data, custom_type_resolver=custom_type_resolver)

# Example usage
data = Data(ip=IPv4Address('1.1.1.1'))
serialized_data = serializer.dump(data)  # {'ip': '1.1.1.1'}
deserialized_data = serializer.load(serialized_data)  # Data(ip=IPv4Address('1.1.1.1'))

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc