Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

tapa

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

tapa

Extending High-Level Synthesis for Task-Parallel Programs

  • 0.0.20240825.1
  • PyPI
  • Socket score

Maintainers
1

TAPA

CI install Documentation Status

TAPA is a dataflow HLS framework that features fast compilation, expressive programming model and generates high-frequency FPGA accelerators.

TAPA Framework

High-Frequency

  • TAPA explicitly decouples communication and computation for better QoR.

  • TAPA integrates the AutoBridge floorplanner to optimize the RTL generation process.

  • TAPA achieves higher the frequency on average compared to Vivado. 1

Speed

  • TAPA compiles faster than Vitis HLS. 2

  • TAPA provides faster software simulation than Vitis HLS.2

  • TAPA provides faster RTL simulation than Vitis.

  • [in-progress] TAPA is integrating RapidStream that is up to 10× faster than Vivado.3

Expressiveness

  • TAPA extends the Vitis HLS syntax for richer expressiveness at the C++ level.

  • TAPA provides dedicated APIs for arbitrary external memory access patterns.

  • TAPA allows users to explicitly specify parallelism.

  • In addition to static burst analysis, TAPA supports runtime burst detectuion by transparently merging small memory transactions into large bursts.

HBM-Specific Optimizations

  • TAPA significantly reduce the area overhead of HBM interface IPs compared to Vitis HLS.

  • TAPA includes an automated design space exploration tool to balance the resource pressure and the wire pressure for HBM FPGAs.

  • TAPA automatically select the physical channel for each top-level argument of your accelerator.

Successful Cases

  • Serpens, DAC'22, achieves 270 MHz on the Xilinx Alveo U280 HBM board when using 24 HBM channels. The Vitis HLS baseline failed in routing.
  • Sextans, FPGA'22, achieves 260 MHz on the Xilinx Alveo U250 board when using 4 DDR channels. The Vivado baseline achieves only 189 MHz.
  • SPLAG, FPGA'22, achieves up to a 4.9× speedup over state-of-the-art FPGA accelerators, up to a 2.6× speedup over 32-thread CPU running at 4.4 GHz, and up to a 0.9× speedup over an A100 GPU (that has 4.1× power budget and 3.4× HBM bandwidth).
  • AutoSA Systolic-Array Compiler, FPGA'21: AutoSA Frequency Figure
  • KNN, FPT'20, achieves 252 MHz on the Xilinx Alveo U280 board. The Vivado baseline achieves only 165 MHz.

Getting Started

TAPA Publications

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc