Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

transformers-js-py

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

transformers-js-py

  • 0.19.4
  • PyPI
  • Socket score

Maintainers
1

Transformers.js.py 🤗

Test, Build, and Publish PyPI

Use Transformers.js on Pyodide and Pyodide-based frameworks such as JupyterLite, stlite (Streamlit), Shinylive (Shiny for Python), PyScript, HoloViz Panel, and so on.

The original Transformers can't be used in a browser environment. Transformers.js is a JavaScript version of Transformers that can be installed on browsers, but we can't use it from Pyodide. This package is a thin wrapper of Transformers.js to proxy its API to Pyodide.

API

The API is more like Transformers.js than the original Transformers.

Transformers.jsTransformers.js.py
import { pipeline } from '@xenova/transformers';

// Allocate a pipeline for sentiment-analysis
let pipe = await pipeline('sentiment-analysis');

let out = await pipe('I love transformers!');
// [{'label': 'POSITIVE', 'score': 0.999817686}]
from transformers_js_py import import_transformers_js

transformers = await import_transformers_js()
pipeline = transformers.pipeline

# Allocate a pipeline for sentiment-analysis
pipe = await pipeline('sentiment-analysis')

out = await pipe('I love transformers!')
# [{'label': 'POSITIVE', 'score': 0.999817686}]

See the Transformers.js document for available features.

Special Case: as_url()

Certain methods of Transformers.js accept a URL as an input. However, when using Transformers.js.py on Pyodide, there may be instances where we want to pass a local file path from the virtual file system, rather than a URL. In such scenarios, the as_url() function can be used to convert a local file path into a URL.

# Example
from transformers_js_py import import_transformers_js, as_url

transformers = await import_transformers_js()
pipeline = transformers.pipeline
pipe = await pipeline('image-classification')

local_image_path = "/path/to/image.jpg"

input_url = as_url(local_image_path)  # Converts a local file path into a URL that can be passed to `pipe()`
result = await pipe(input_url)

Examples

JupyterLite

JupyterLite screenshot

👉Try this code snippet on https://jupyter.org/try-jupyter/lab/index.html

%pip install transformers_js_py

from transformers_js_py import import_transformers_js

transformers = await import_transformers_js()
pipeline = transformers.pipeline

pipe = await pipeline('sentiment-analysis')

out = await pipe('I love transformers!')

print(out)

Stlite (In-browser Streamlit)

Stlite Sharing screenshot

👉 Online Demo: try out this code online.

import streamlit as st

from transformers_js_py import import_transformers_js

st.title("Sentiment analysis")

text = st.text_input("Input some text", "I love transformers!")

if text:
    with st.spinner():
        transformers = await import_transformers_js()
        pipeline = transformers.pipeline
        if "pipe" not in st.session_state:
            st.session_state["pipe"] = await pipeline('sentiment-analysis')
        pipe = st.session_state["pipe"]
        out = await pipe(text)
    st.write(out)

Gradio-Lite

Gradio-lite screenshot

Save the following code as an HTML file and open it in a browser.

<!DOCTYPE html>
<html lang="en">
<head>
  <script type="module" crossorigin src="https://cdn.jsdelivr.net/npm/@gradio/lite/dist/lite.js"></script>
  <link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/@gradio/lite/dist/lite.css" />
  <title>Transformers.js with Gradio-lite</title>
  <style>
    html, body {
      margin: 0;
      padding: 0;
      height: 100%;
      width: 100%;
    }
    gradio-lite {
      height: 100%;
      width: 100%;
    }
  </style>
</head>
<body>
<gradio-lite>

<gradio-requirements>
transformers_js_py
</gradio-requirements>

<gradio-file name="app.py" entrypoint>
import gradio as gr
from transformers_js_py import import_transformers_js

transformers = await import_transformers_js()
pipeline = transformers.pipeline

pipe = await pipeline('sentiment-analysis')

async def process(text):
    return await pipe(text)

demo = gr.Interface(fn=process, inputs="text", outputs="json")

demo.launch()
</gradio-file>

</gradio-lite>
</body>
</html>

👉 Online demo

The following articles help learn more:

Shinylive

Shinylive screenshot

👉 Online demo : try out this code online.

from shiny import App, render, ui
from transformers_js_py import import_transformers_js

app_ui = ui.page_fluid(
    ui.input_text("text", "Text input", placeholder="Enter text"),
    ui.output_text_verbatim("txt"),
)


def server(input, output, session):
    @output
    @render.text
    async def txt():
        if not input.text():
            return ""

        transformers = await import_transformers_js()
        pipeline = transformers.pipeline

        pipe = await pipeline('sentiment-analysis')

        out = await pipe(input.text())

        return str(out)


app = App(app_ui, server, debug=True)

PyScript

PyScript screenshot

👉Try this code snippet on https://pyscript.com/

<html>
  <head>
    <link rel="stylesheet" href="https://pyscript.net/latest/pyscript.css" />
    <script defer src="https://pyscript.net/latest/pyscript.js"></script>
  </head>
  <body>
    <input type="text" value="" id="text-input" />
    <button py-click="run()" id="run-button">Run</button>

    <py-config>
        packages = ["transformers-js-py"]
    </py-config>
    <py-script>
        import asyncio
        from transformers_js_py import import_transformers_js

        text_input = Element("text-input")

        async def main(input_data):
            transformers = await import_transformers_js()
            pipeline = transformers.pipeline
            pipe = await pipeline('sentiment-analysis')
            out = await pipe(input_data)
            print(out)

        def run():
            print("Start")
            input_data = text_input.value
            if input_data.strip() == "":
                print("No data input.")
                return

            future = asyncio.ensure_future(main(input_data))
    </py-script>
  </body>
</html>

Panel

py.cafe

With HoloViz Panel you develop your app on your laptop and convert it to Pyodide or PyScript by running panel convert.

HoloViz Panel Transformers App

Install the requirements

pip install panel transformers_js_py

Create the app.py file in your favorite editor or IDE.

import panel as pn

pn.extension(sizing_mode="stretch_width", design="material")

@pn.cache
async def _get_pipeline(model="sentiment-analysis"):
    from transformers_js_py import import_transformers_js
    transformers = await import_transformers_js()
    return await transformers.pipeline(model)


text_input = pn.widgets.TextInput(placeholder="Send a message", name="Message")
button = pn.widgets.Button(name="Send", icon="send", align="end", button_type="primary")

@pn.depends(text_input, button)
async def _response(text, event):
    if not text:
        return {}
    pipe = await _get_pipeline()
    return await pipe(text)

pn.Column(
    text_input, button, pn.pane.JSON(_response, depth=2)
).servable()

Convert the app to Pyodide. For more options like hot reload check out the Panel Convert guide.

panel convert app.py --to pyodide-worker --out pyodide --requirements transformers_js_py

Now serve the app

python -m http.server -d pyodide

Finally you can try out the app by opening localhost:8000/app.html

Panel Chat App Example

py.cafe

You can also use transformers_js_py with Panels Chat Components.

HoloViz Panel Transformers App

import panel as pn

MODEL = "sentiment-analysis"
pn.chat.ChatMessage.default_avatars["hugging face"] = "🤗"

pn.extension(design="material")

@pn.cache
async def _get_pipeline(model):
    from transformers_js_py import import_transformers_js
    transformers = await import_transformers_js()
    return await transformers.pipeline(model)

async def callback(contents: str, user: str, instance: pn.chat.ChatInterface):
    pipe = await _get_pipeline(MODEL)
    response = await pipe(contents)
    label, score = response[0]["label"], round(response[0]["score"], 2)
    return f"""I feel a {label} vibe here (score: {score})"""

welcome_message = pn.chat.ChatMessage(
    f"I'm a Hugging Face Transformers `{MODEL}` model.\n\nPlease *send a message*!",
    user="Hugging Face",
)

pn.chat.ChatInterface(
    welcome_message, placeholder_text="Loading the model ...",
    callback=callback, callback_user="Hugging Face",
).servable()

For more chat examples see Panel Chat Examples.

Solara on py.cafe

Py.cafe is an online Python sandbox environment that supports many web frameworks, here is an example using Solara

pycafe screenshot

👉 Online demo : try out this code online on py.cafe.

import solara

clicks = solara.reactive(0)
input = solara.reactive("I love transformers")

from transformers_js_py import import_transformers_js

@solara.lab.task
async def run(input):

    transformers = await import_transformers_js()
    pipeline = transformers.pipeline

    # Allocate a pipeline for sentiment-analysis
    pipe = await pipeline('sentiment-analysis')

    out = await pipe(input)
    # [{'label': 'POSITIVE', 'score': 0.999817686}]
    return out

@solara.component
def Page():
    if run.error:
        solara.Error(repr(run.exception))
    with solara.Card("Sentiment analysis"):
        solara.ProgressLinear(run.pending)
        with solara.Div():
            solara.InputText(label="Input", value=input)
            solara.Button(label=f"Analyze sentiment", on_click=lambda: run(input.value), color="primary", filled=True)
        if run.finished:
            solara.Text(repr(run.value))

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc