Security News
Research
Data Theft Repackaged: A Case Study in Malicious Wrapper Packages on npm
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
A Ruby gem for interacting with Ollama's API that allows you to run open source AI LLMs (Large Language Models) locally.
This Gem is designed to provide low-level access to Ollama, enabling people to build abstractions on top of it. If you are interested in more high-level abstractions or more user-friendly tools, you may want to consider Nano Bots 💎 🤖.
gem 'ollama-ai', '~> 1.3.0'
require 'ollama-ai'
client = Ollama.new(
credentials: { address: 'http://localhost:11434' },
options: { server_sent_events: true }
)
result = client.generate(
{ model: 'llama2',
prompt: 'Hi!' }
)
Result:
[{ 'model' => 'llama2',
'created_at' => '2024-01-07T01:34:02.088810408Z',
'response' => 'Hello',
'done' => false },
{ 'model' => 'llama2',
'created_at' => '2024-01-07T01:34:02.419045606Z',
'response' => '!',
'done' => false },
# ..
{ 'model' => 'llama2',
'created_at' => '2024-01-07T01:34:07.680049831Z',
'response' => '?',
'done' => false },
{ 'model' => 'llama2',
'created_at' => '2024-01-07T01:34:07.872170352Z',
'response' => '',
'done' => true,
'context' =>
[518, 25_580,
# ...
13_563, 29_973],
'total_duration' => 11_653_781_127,
'load_duration' => 1_186_200_439,
'prompt_eval_count' => 22,
'prompt_eval_duration' => 5_006_751_000,
'eval_count' => 25,
'eval_duration' => 5_453_058_000 }]
gem install ollama-ai -v 1.3.0
gem 'ollama-ai', '~> 1.3.0'
Create a new client:
require 'ollama-ai'
client = Ollama.new(
credentials: { address: 'http://localhost:11434' },
options: { server_sent_events: true }
)
require 'ollama-ai'
client = Ollama.new(
credentials: {
address: 'http://localhost:11434',
bearer_token: 'eyJhbG...Qssw5c'
},
options: { server_sent_events: true }
)
Remember that hardcoding your credentials in code is unsafe. It's preferable to use environment variables:
require 'ollama-ai'
client = Ollama.new(
credentials: {
address: 'http://localhost:11434',
bearer_token: ENV['OLLAMA_BEARER_TOKEN']
},
options: { server_sent_events: true }
)
client.generate
client.chat
client.embeddings
client.create
client.tags
client.show
client.copy
client.delete
client.pull
client.push
API Documentation: https://github.com/jmorganca/ollama/blob/main/docs/api.md#generate-a-completion
API Documentation: https://github.com/jmorganca/ollama/blob/main/docs/api.md#generate-a-completion
result = client.generate(
{ model: 'llama2',
prompt: 'Hi!',
stream: false }
)
Result:
[{ 'model' => 'llama2',
'created_at' => '2024-01-07T01:35:41.951371247Z',
'response' => "Hi there! It's nice to meet you. How are you today?",
'done' => true,
'context' =>
[518, 25_580,
# ...
9826, 29_973],
'total_duration' => 6_981_097_576,
'load_duration' => 625_053,
'prompt_eval_count' => 22,
'prompt_eval_duration' => 4_075_171_000,
'eval_count' => 16,
'eval_duration' => 2_900_325_000 }]
API Documentation: https://github.com/jmorganca/ollama/blob/main/docs/api.md#generate-a-completion
Ensure that you have enabled Server-Sent Events before using blocks for streaming. stream: true
is not necessary, as true
is the default:
client.generate(
{ model: 'llama2',
prompt: 'Hi!' }
) do |event, raw|
puts event
end
Event:
{ 'model' => 'llama2',
'created_at' => '2024-01-07T01:36:30.665245712Z',
'response' => 'Hello',
'done' => false }
You can get all the receive events at once as an array:
result = client.generate(
{ model: 'llama2',
prompt: 'Hi!' }
)
Result:
[{ 'model' => 'llama2',
'created_at' => '2024-01-07T01:36:30.665245712Z',
'response' => 'Hello',
'done' => false },
{ 'model' => 'llama2',
'created_at' => '2024-01-07T01:36:30.927337136Z',
'response' => '!',
'done' => false },
# ...
{ 'model' => 'llama2',
'created_at' => '2024-01-07T01:36:37.249416767Z',
'response' => '?',
'done' => false },
{ 'model' => 'llama2',
'created_at' => '2024-01-07T01:36:37.44041283Z',
'response' => '',
'done' => true,
'context' =>
[518, 25_580,
# ...
13_563, 29_973],
'total_duration' => 10_551_395_645,
'load_duration' => 966_631,
'prompt_eval_count' => 22,
'prompt_eval_duration' => 4_034_990_000,
'eval_count' => 25,
'eval_duration' => 6_512_954_000 }]
You can mix both as well:
result = client.generate(
{ model: 'llama2',
prompt: 'Hi!' }
) do |event, raw|
puts event
end
API Documentation: https://github.com/jmorganca/ollama/blob/main/docs/api.md#generate-a-chat-completion
result = client.chat(
{ model: 'llama2',
messages: [
{ role: 'user', content: 'Hi! My name is Purple.' }
] }
) do |event, raw|
puts event
end
Event:
{ 'model' => 'llama2',
'created_at' => '2024-01-07T01:38:01.729897311Z',
'message' => { 'role' => 'assistant', 'content' => "\n" },
'done' => false }
Result:
[{ 'model' => 'llama2',
'created_at' => '2024-01-07T01:38:01.729897311Z',
'message' => { 'role' => 'assistant', 'content' => "\n" },
'done' => false },
{ 'model' => 'llama2',
'created_at' => '2024-01-07T01:38:02.081494506Z',
'message' => { 'role' => 'assistant', 'content' => '*' },
'done' => false },
# ...
{ 'model' => 'llama2',
'created_at' => '2024-01-07T01:38:17.855905499Z',
'message' => { 'role' => 'assistant', 'content' => '?' },
'done' => false },
{ 'model' => 'llama2',
'created_at' => '2024-01-07T01:38:18.07331245Z',
'message' => { 'role' => 'assistant', 'content' => '' },
'done' => true,
'total_duration' => 22_494_544_502,
'load_duration' => 4_224_600,
'prompt_eval_count' => 28,
'prompt_eval_duration' => 6_496_583_000,
'eval_count' => 61,
'eval_duration' => 15_991_728_000 }]
API Documentation: https://github.com/jmorganca/ollama/blob/main/docs/api.md#generate-a-chat-completion
To maintain a back-and-forth conversation, you need to append the received responses and build a history for your requests:
result = client.chat(
{ model: 'llama2',
messages: [
{ role: 'user', content: 'Hi! My name is Purple.' },
{ role: 'assistant',
content: 'Hi, Purple!' },
{ role: 'user', content: "What's my name?" }
] }
) do |event, raw|
puts event
end
Event:
{ 'model' => 'llama2',
'created_at' => '2024-01-07T01:40:07.352998498Z',
'message' => { 'role' => 'assistant', 'content' => ' Pur' },
'done' => false }
Result:
[{ 'model' => 'llama2',
'created_at' => '2024-01-07T01:40:06.562939469Z',
'message' => { 'role' => 'assistant', 'content' => 'Your' },
'done' => false },
# ...
{ 'model' => 'llama2',
'created_at' => '2024-01-07T01:40:07.352998498Z',
'message' => { 'role' => 'assistant', 'content' => ' Pur' },
'done' => false },
{ 'model' => 'llama2',
'created_at' => '2024-01-07T01:40:07.545323584Z',
'message' => { 'role' => 'assistant', 'content' => 'ple' },
'done' => false },
{ 'model' => 'llama2',
'created_at' => '2024-01-07T01:40:07.77769408Z',
'message' => { 'role' => 'assistant', 'content' => '!' },
'done' => false },
{ 'model' => 'llama2',
'created_at' => '2024-01-07T01:40:07.974165849Z',
'message' => { 'role' => 'assistant', 'content' => '' },
'done' => true,
'total_duration' => 11_482_012_681,
'load_duration' => 4_246_882,
'prompt_eval_count' => 57,
'prompt_eval_duration' => 10_387_150_000,
'eval_count' => 6,
'eval_duration' => 1_089_249_000 }]
API Documentation: https://github.com/jmorganca/ollama/blob/main/docs/api.md#generate-embeddings
result = client.embeddings(
{ model: 'llama2',
prompt: 'Hi!' }
)
Result:
[{ 'embedding' =>
[0.6970467567443848, -2.248202085494995,
# ...
-1.5994540452957153, -0.3464218080043793] }]
API Documentation: https://github.com/jmorganca/ollama/blob/main/docs/api.md#create-a-model
result = client.create(
{ name: 'mario',
modelfile: "FROM llama2\nSYSTEM You are mario from Super Mario Bros." }
) do |event, raw|
puts event
end
Event:
{ 'status' => 'reading model metadata' }
Result:
[{ 'status' => 'reading model metadata' },
{ 'status' => 'creating system layer' },
{ 'status' =>
'using already created layer sha256:4eca7304a07a42c48887f159ef5ad82ed5a5bd30fe52db4aadae1dd938e26f70' },
{ 'status' =>
'using already created layer sha256:876a8d805b60882d53fed3ded3123aede6a996bdde4a253de422cacd236e33d3' },
{ 'status' =>
'using already created layer sha256:a47b02e00552cd7022ea700b1abf8c572bb26c9bc8c1a37e01b566f2344df5dc' },
{ 'status' =>
'using already created layer sha256:f02dd72bb2423204352eabc5637b44d79d17f109fdb510a7c51455892aa2d216' },
{ 'status' =>
'writing layer sha256:1741cf59ce26ff01ac614d31efc700e21e44dd96aed60a7c91ab3f47e440ef94' },
{ 'status' =>
'writing layer sha256:e8bcbb2eebad88c2fa64bc32939162c064be96e70ff36aff566718fc9186b427' },
{ 'status' => 'writing manifest' },
{ 'status' => 'success' }]
After creation, you can use it:
client.generate(
{ model: 'mario',
prompt: 'Hi! Who are you?' }
) do |event, raw|
print event['response']
end
Woah! adjusts sunglasses It's-a me, Mario! winks You must be a new friend I've-a met here in the Mushroom Kingdom. tips top hat What brings you to this neck of the woods? Maybe you're looking for-a some help on your adventure? nods Just let me know, and I'll do my best to-a assist ya! 😃
API Documentation: https://github.com/jmorganca/ollama/blob/main/docs/api.md#list-local-models
result = client.tags
Result:
[{ 'models' =>
[{ 'name' => 'llama2:latest',
'modified_at' => '2024-01-06T15:06:23.6349195-03:00',
'size' => 3_826_793_677,
'digest' =>
'78e26419b4469263f75331927a00a0284ef6544c1975b826b15abdaef17bb962',
'details' =>
{ 'format' => 'gguf',
'family' => 'llama',
'families' => ['llama'],
'parameter_size' => '7B',
'quantization_level' => 'Q4_0' } },
{ 'name' => 'mario:latest',
'modified_at' => '2024-01-06T22:41:59.495298101-03:00',
'size' => 3_826_793_787,
'digest' =>
'291f46d2fa687dfaff45de96a8cb6e32707bc16ec1e1dfe8d65e9634c34c660c',
'details' =>
{ 'format' => 'gguf',
'family' => 'llama',
'families' => ['llama'],
'parameter_size' => '7B',
'quantization_level' => 'Q4_0' } }] }]
API Documentation: https://github.com/jmorganca/ollama/blob/main/docs/api.md#show-model-information
result = client.show(
{ name: 'llama2' }
)
Result:
[{ 'license' =>
"LLAMA 2 COMMUNITY LICENSE AGREEMENT\t\n" \
# ...
"* Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama..." \
"\n",
'modelfile' =>
"# Modelfile generated by \"ollama show\"\n" \
# ...
'PARAMETER stop "<</SYS>>"',
'parameters' =>
"stop [INST]\n" \
"stop [/INST]\n" \
"stop <<SYS>>\n" \
'stop <</SYS>>',
'template' =>
"[INST] <<SYS>>{{ .System }}<</SYS>>\n\n{{ .Prompt }} [/INST]\n",
'details' =>
{ 'format' => 'gguf',
'family' => 'llama',
'families' => ['llama'],
'parameter_size' => '7B',
'quantization_level' => 'Q4_0' } }]
API Documentation: https://github.com/jmorganca/ollama/blob/main/docs/api.md#copy-a-model
result = client.copy(
{ source: 'llama2',
destination: 'llama2-backup' }
)
Result:
true
If the source model does not exist:
begin
result = client.copy(
{ source: 'purple',
destination: 'purple-backup' }
)
rescue Ollama::Errors::OllamaError => error
puts error.class # Ollama::Errors::RequestError
puts error.message # 'the server responded with status 404'
puts error.payload
# { source: 'purple',
# destination: 'purple-backup',
# ...
# }
puts error.request.inspect
# #<Faraday::ResourceNotFound response={:status=>404, :headers...
end
API Documentation: https://github.com/jmorganca/ollama/blob/main/docs/api.md#delete-a-model
result = client.delete(
{ name: 'llama2' }
)
Result:
true
If the model does not exist:
begin
result = client.delete(
{ name: 'llama2' }
)
rescue Ollama::Errors::OllamaError => error
puts error.class # Ollama::Errors::RequestError
puts error.message # 'the server responded with status 404'
puts error.payload
# { name: 'llama2',
# ...
# }
puts error.request.inspect
# #<Faraday::ResourceNotFound response={:status=>404, :headers...
end
API Documentation: https://github.com/jmorganca/ollama/blob/main/docs/api.md#pull-a-model
result = client.pull(
{ name: 'llama2' }
) do |event, raw|
puts event
end
Event:
{ 'status' => 'pulling manifest' }
Result:
[{ 'status' => 'pulling manifest' },
{ 'status' => 'pulling 4eca7304a07a',
'digest' =>
'sha256:4eca7304a07a42c48887f159ef5ad82ed5a5bd30fe52db4aadae1dd938e26f70',
'total' => 1_602_463_008,
'completed' => 1_602_463_008 },
# ...
{ 'status' => 'verifying sha256 digest' },
{ 'status' => 'writing manifest' },
{ 'status' => 'removing any unused layers' },
{ 'status' => 'success' }]
Documentation: API and Publishing Your Model.
You need to create an account at https://ollama.ai and add your Public Key at https://ollama.ai/settings/keys.
Your keys are located in /usr/share/ollama/.ollama/
. You may need to copy them to your user directory:
sudo cp /usr/share/ollama/.ollama/id_ed25519 ~/.ollama/
sudo cp /usr/share/ollama/.ollama/id_ed25519.pub ~/.ollama/
Copy your model to your user namespace:
client.copy(
{ source: 'mario',
destination: 'your-user/mario' }
)
And push it:
result = client.push(
{ name: 'your-user/mario' }
) do |event, raw|
puts event
end
Event:
{ 'status' => 'retrieving manifest' }
Result:
[{ 'status' => 'retrieving manifest' },
{ 'status' => 'pushing 4eca7304a07a',
'digest' =>
'sha256:4eca7304a07a42c48887f159ef5ad82ed5a5bd30fe52db4aadae1dd938e26f70',
'total' => 1_602_463_008,
'completed' => 1_602_463_008 },
# ...
{ 'status' => 'pushing e8bcbb2eebad',
'digest' =>
'sha256:e8bcbb2eebad88c2fa64bc32939162c064be96e70ff36aff566718fc9186b427',
'total' => 555,
'completed' => 555 },
{ 'status' => 'pushing manifest' },
{ 'status' => 'success' }]
You can use the generate or chat methods for text.
Courtesy of Unsplash
You need to choose a model that supports images, like LLaVA or bakllava, and encode the image as Base64.
Depending on your hardware, some models that support images can be slow, so you may want to increase the client timeout:
client = Ollama.new(
credentials: { address: 'http://localhost:11434' },
options: {
server_sent_events: true,
connection: { request: { timeout: 120, read_timeout: 120 } } }
)
Using the generate
method:
require 'base64'
client.generate(
{ model: 'llava',
prompt: 'Please describe this image.',
images: [Base64.strict_encode64(File.read('piano.jpg'))] }
) do |event, raw|
print event['response']
end
Output:
The image is a black and white photo of an old piano, which appears to be in need of maintenance. A chair is situated right next to the piano. Apart from that, there are no other objects or people visible in the scene.
Using the chat
method:
require 'base64'
result = client.chat(
{ model: 'llava',
messages: [
{ role: 'user',
content: 'Please describe this image.',
images: [Base64.strict_encode64(File.read('piano.jpg'))] }
] }
) do |event, raw|
puts event
end
Output:
The image displays an old piano, sitting on a wooden floor with black keys. Next to the piano, there is another keyboard in the scene, possibly used for playing music.
On top of the piano, there are two mice placed in different locations within its frame. These mice might be meant for controlling the music being played or simply as decorative items. The overall atmosphere seems to be focused on artistic expression through this unique instrument.
Server-Sent Events (SSE) is a technology that allows certain endpoints to offer streaming capabilities, such as creating the impression that "the model is typing along with you," rather than delivering the entire answer all at once.
You can set up the client to use Server-Sent Events (SSE) for all supported endpoints:
client = Ollama.new(
credentials: { address: 'http://localhost:11434' },
options: { server_sent_events: true }
)
Or, you can decide on a request basis:
result = client.generate(
{ model: 'llama2',
prompt: 'Hi!' },
server_sent_events: true
) do |event, raw|
puts event
end
With Server-Sent Events (SSE) enabled, you can use a block to receive partial results via events. This feature is particularly useful for methods that offer streaming capabilities, such as generate
: Receiving Stream Events
Method calls will hang until the server-sent events finish, so even without providing a block, you can obtain the final results of the received events: Receiving Stream Events
Ollama may launch a new endpoint that we haven't covered in the Gem yet. If that's the case, you may still be able to use it through the request
method. For example, generate
is just a wrapper for api/generate
, which you can call directly like this:
result = client.request(
'api/generate',
{ model: 'llama2',
prompt: 'Hi!' },
request_method: 'POST', server_sent_events: true
)
The gem uses Faraday with the Typhoeus adapter by default.
You can use a different adapter if you want:
require 'faraday/net_http'
client = Ollama.new(
credentials: { address: 'http://localhost:11434' },
options: { connection: { adapter: :net_http } }
)
You can set the maximum number of seconds to wait for the request to complete with the timeout
option:
client = Ollama.new(
credentials: { address: 'http://localhost:11434' },
options: { connection: { request: { timeout: 5 } } }
)
You can also have more fine-grained control over Faraday's Request Options if you prefer:
client = Ollama.new(
credentials: { address: 'http://localhost:11434' },
options: {
connection: {
request: {
timeout: 5,
open_timeout: 5,
read_timeout: 5,
write_timeout: 5
}
}
}
)
require 'ollama-ai'
begin
client.chat_completions(
{ model: 'llama2',
prompt: 'Hi!' }
)
rescue Ollama::Errors::OllamaError => error
puts error.class # Ollama::Errors::RequestError
puts error.message # 'the server responded with status 500'
puts error.payload
# { model: 'llama2',
# prompt: 'Hi!',
# ...
# }
puts error.request.inspect
# #<Faraday::ServerError response={:status=>500, :headers...
end
require 'ollama-ai/errors'
begin
client.chat_completions(
{ model: 'llama2',
prompt: 'Hi!' }
)
rescue OllamaError => error
puts error.class # Ollama::Errors::RequestError
end
OllamaError
BlockWithoutServerSentEventsError
RequestError
bundle
rubocop -A
bundle exec ruby spec/tasks/run-client.rb
bundle exec ruby spec/tasks/test-encoding.rb
This Gem is designed to provide low-level access to Ollama, enabling people to build abstractions on top of it. If you are interested in more high-level abstractions or more user-friendly tools, you may want to consider Nano Bots 💎 🤖.
gem build ollama-ai.gemspec
gem signin
gem push ollama-ai-1.3.0.gem
Install Babashka:
curl -s https://raw.githubusercontent.com/babashka/babashka/master/install | sudo bash
Update the template.md
file and then:
bb tasks/generate-readme.clj
Trick for automatically updating the README.md
when template.md
changes:
sudo pacman -S inotify-tools # Arch / Manjaro
sudo apt-get install inotify-tools # Debian / Ubuntu / Raspberry Pi OS
sudo dnf install inotify-tools # Fedora / CentOS / RHEL
while inotifywait -e modify template.md; do bb tasks/generate-readme.clj; done
Trick for Markdown Live Preview:
pip install -U markdown_live_preview
mlp README.md -p 8076
These resources and references may be useful throughout your learning process:
This is not an official Ollama project, nor is it affiliated with Ollama in any way.
This software is distributed under the MIT License. This license includes a disclaimer of warranty. Moreover, the authors assume no responsibility for any damage or costs that may result from using this project. Use the Ollama AI Ruby Gem at your own risk.
FAQs
Unknown package
We found that ollama-ai demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Research
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
Research
Security News
Attackers used a malicious npm package typosquatting a popular ESLint plugin to steal sensitive data, execute commands, and exploit developer systems.
Security News
The Ultralytics' PyPI Package was compromised four times in one weekend through GitHub Actions cache poisoning and failure to rotate previously compromised API tokens.