Package cognitoidentity provides the client and types for making API requests to Amazon Cognito Identity. Amazon Cognito is a web service that delivers scoped temporary credentials to mobile devices and other untrusted environments. Amazon Cognito uniquely identifies a device and supplies the user with a consistent identity over the lifetime of an application. Using Amazon Cognito, you can enable authentication with one or more third-party identity providers (Facebook, Google, or Login with Amazon), and you can also choose to support unauthenticated access from your app. Cognito delivers a unique identifier for each user and acts as an OpenID token provider trusted by AWS Security Token Service (STS) to access temporary, limited-privilege AWS credentials. To provide end-user credentials, first make an unsigned call to GetId. If the end user is authenticated with one of the supported identity providers, set the Logins map with the identity provider token. GetId returns a unique identifier for the user. Next, make an unsigned call to GetCredentialsForIdentity. This call expects the same Logins map as the GetId call, as well as the IdentityID originally returned by GetId. Assuming your identity pool has been configured via the SetIdentityPoolRoles operation, GetCredentialsForIdentity will return AWS credentials for your use. If your pool has not been configured with SetIdentityPoolRoles, or if you want to follow legacy flow, make an unsigned call to GetOpenIdToken, which returns the OpenID token necessary to call STS and retrieve AWS credentials. This call expects the same Logins map as the GetId call, as well as the IdentityID originally returned by GetId. The token returned by GetOpenIdToken can be passed to the STS operation AssumeRoleWithWebIdentity (http://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRoleWithWebIdentity.html) to retrieve AWS credentials. If you want to use Amazon Cognito in an Android, iOS, or Unity application, you will probably want to make API calls via the AWS Mobile SDK. To learn more, see the AWS Mobile SDK Developer Guide (http://docs.aws.amazon.com/mobile/index.html). See https://docs.aws.amazon.com/goto/WebAPI/cognito-identity-2014-06-30 for more information on this service. See cognitoidentity package documentation for more information. https://docs.aws.amazon.com/sdk-for-go/api/service/cognitoidentity/ To Amazon Cognito Identity with the SDK use the New function to create a new service client. With that client you can make API requests to the service. These clients are safe to use concurrently. See the SDK's documentation for more information on how to use the SDK. https://docs.aws.amazon.com/sdk-for-go/api/ See aws.Config documentation for more information on configuring SDK clients. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config See the Amazon Cognito Identity client CognitoIdentity for more information on creating client for this service. https://docs.aws.amazon.com/sdk-for-go/api/service/cognitoidentity/#New
Package spanner provides a client for reading and writing to Cloud Spanner databases. See the packages under admin for clients that operate on databases and instances. Note: This package is in beta. Some backwards-incompatible changes may occur. See https://cloud.google.com/spanner/docs/getting-started/go/ for an introduction to Cloud Spanner and additional help on using this API. See https://godoc.org/cloud.google.com/go for authentication, timeouts, connection pooling and similar aspects of this package. To start working with this package, create a client that refers to the database of interest: Remember to close the client after use to free up the sessions in the session pool. Two Client methods, Apply and Single, work well for simple reads and writes. As a quick introduction, here we write a new row to the database and read it back: All the methods used above are discussed in more detail below. Every Cloud Spanner row has a unique key, composed of one or more columns. Construct keys with a literal of type Key: The keys of a Cloud Spanner table are ordered. You can specify ranges of keys using the KeyRange type: By default, a KeyRange includes its start key but not its end key. Use the Kind field to specify other boundary conditions: A KeySet represents a set of keys. A single Key or KeyRange can act as a KeySet. Use the KeySets function to build the union of several KeySets: AllKeys returns a KeySet that refers to all the keys in a table: All Cloud Spanner reads and writes occur inside transactions. There are two types of transactions, read-only and read-write. Read-only transactions cannot change the database, do not acquire locks, and may access either the current database state or states in the past. Read-write transactions can read the database before writing to it, and always apply to the most recent database state. The simplest and fastest transaction is a ReadOnlyTransaction that supports a single read operation. Use Client.Single to create such a transaction. You can chain the call to Single with a call to a Read method. When you only want one row whose key you know, use ReadRow. Provide the table name, key, and the columns you want to read: Read multiple rows with the Read method. It takes a table name, KeySet, and list of columns: Read returns a RowIterator. You can call the Do method on the iterator and pass a callback: RowIterator also follows the standard pattern for the Google Cloud Client Libraries: Always call Stop when you finish using an iterator this way, whether or not you iterate to the end. (Failing to call Stop could lead you to exhaust the database's session quota.) To read rows with an index, use ReadUsingIndex. The most general form of reading uses SQL statements. Construct a Statement with NewStatement, setting any parameters using the Statement's Params map: You can also construct a Statement directly with a struct literal, providing your own map of parameters. Use the Query method to run the statement and obtain an iterator: Once you have a Row, via an iterator or a call to ReadRow, you can extract column values in several ways. Pass in a pointer to a Go variable of the appropriate type when you extract a value. You can extract by column position or name: You can extract all the columns at once: Or you can define a Go struct that corresponds to your columns, and extract into that: For Cloud Spanner columns that may contain NULL, use one of the NullXXX types, like NullString: To perform more than one read in a transaction, use ReadOnlyTransaction: You must call Close when you are done with the transaction. Cloud Spanner read-only transactions conceptually perform all their reads at a single moment in time, called the transaction's read timestamp. Once a read has started, you can call ReadOnlyTransaction's Timestamp method to obtain the read timestamp. By default, a transaction will pick the most recent time (a time where all previously committed transactions are visible) for its reads. This provides the freshest data, but may involve some delay. You can often get a quicker response if you are willing to tolerate "stale" data. You can control the read timestamp selected by a transaction by calling the WithTimestampBound method on the transaction before using it. For example, to perform a query on data that is at most one minute stale, use See the documentation of TimestampBound for more details. To write values to a Cloud Spanner database, construct a Mutation. The spanner package has functions for inserting, updating and deleting rows. Except for the Delete methods, which take a Key or KeyRange, each mutation-building function comes in three varieties. One takes lists of columns and values along with the table name: One takes a map from column names to values: And the third accepts a struct value, and determines the columns from the struct field names: To apply a list of mutations to the database, use Apply: If you need to read before writing in a single transaction, use a ReadWriteTransaction. ReadWriteTransactions may abort and need to be retried. You pass in a function to ReadWriteTransaction, and the client will handle the retries automatically. Use the transaction's BufferWrite method to buffer mutations, which will all be executed at the end of the transaction: Spanner supports DML statements like INSERT, UPDATE and DELETE. Use ReadWriteTransaction.Update to run DML statements. It returns the number of rows affected. (You can call use ReadWriteTransaction.Query with a DML statement. The first call to Next on the resulting RowIterator will return iterator.Done, and the RowCount field of the iterator will hold the number of affected rows.) For large databases, it may be more efficient to partition the DML statement. Use client.PartitionedUpdate to run a DML statement in this way. Not all DML statements can be partitioned. This client has been instrumented to use OpenCensus tracing (http://opencensus.io). To enable tracing, see "Enabling Tracing for a Program" at https://godoc.org/go.opencensus.io/trace. OpenCensus tracing requires Go 1.8 or higher.
Package firestore provides a client for reading and writing to a Cloud Firestore database. See https://cloud.google.com/firestore/docs for an introduction to Cloud Firestore and additional help on using the Firestore API. See https://godoc.org/cloud.google.com/go for authentication, timeouts, connection pooling and similar aspects of this package. Note: you can't use both Cloud Firestore and Cloud Datastore in the same project. To start working with this package, create a client with a project ID: In Firestore, documents are sets of key-value pairs, and collections are groups of documents. A Firestore database consists of a hierarchy of alternating collections and documents, referred to by slash-separated paths like "States/California/Cities/SanFrancisco". This client is built around references to collections and documents. CollectionRefs and DocumentRefs are lightweight values that refer to the corresponding database entities. Creating a ref does not involve any network traffic. Use DocumentRef.Get to read a document. The result is a DocumentSnapshot. Call its Data method to obtain the entire document contents as a map. You can also obtain a single field with DataAt, or extract the data into a struct with DataTo. With the type definition we can extract the document's data into a value of type State: Note that this client supports struct tags beginning with "firestore:" that work like the tags of the encoding/json package, letting you rename fields, ignore them, or omit their values when empty. To retrieve multiple documents from their references in a single call, use Client.GetAll. For writing individual documents, use the methods on DocumentReference. Create creates a new document. The first return value is a WriteResult, which contains the time at which the document was updated. Create fails if the document exists. Another method, Set, either replaces an existing document or creates a new one. To update some fields of an existing document, use Update. It takes a list of paths to update and their corresponding values. Use DocumentRef.Delete to delete a document. You can condition Deletes or Updates on when a document was last changed. Specify these preconditions as an option to a Delete or Update method. The check and the write happen atomically with a single RPC. Here we update a doc only if it hasn't changed since we read it. You could also do this with a transaction. To perform multiple writes at once, use a WriteBatch. Its methods chain for convenience. WriteBatch.Commit sends the collected writes to the server, where they happen atomically. You can use SQL to select documents from a collection. Begin with the collection, and build up a query using Select, Where and other methods of Query. Supported operators include `<`, `<=`, `>`, `>=`, `==`, and 'array-contains'. Call the Query's Documents method to get an iterator, and use it like the other Google Cloud Client iterators. To get all the documents in a collection, you can use the collection itself as a query. Use a transaction to execute reads and writes atomically. All reads must happen before any writes. Transaction creation, commit, rollback and retry are handled for you by the Client.RunTransaction method; just provide a function and use the read and write methods of the Transaction passed to it.
Package main/cmd is the entry point for the URL shortener service application. This service provides an HTTP server that handles requests for creating, retrieving, and editing shortened URLs. It uses the Gin web framework for routing and handling HTTP requests, zap for structured logging, and Google Cloud Datastore for storage of URL mappings. The main function initializes the necessary components such as the logger, the Datastore client, and the HTTP router. It also sets up the HTTP server and starts listening for incoming requests. The application's configuration is driven by environment variables, including the Datastore project ID and the desired port for the HTTP server. The service supports a RESTful API for managing URLs and includes middleware for request logging. The application is designed to be deployed as a containerized service, and it is capable of being scaled horizontally to handle high loads.
Package goschtalt is a lightweight and flexible configuration registry that makes it easy to configure an application. Goschtalt is a fresh take on application configuration now that Go has improved filesystem abstraction, modules, and the Option pattern. At its core, Goschtalt is a low dependency library that provides configuration values via a small and customizable API. The configuration values can be merged using either the default semantics or specified on a parameter by parameter basis. The project contains several related packages that are isolated from the core goschtalt package to keep the dependencies low. They are all maintained by the same group of people, but are not required to be used together, and are otherwise independent (different go modules). They can be found here: For most of the decoders you can specify instructions for goschtalt's handling of the data fields by annotating the key portion. Here's a simple example in yaml: If this configuration data is merged with an existing configuration set: The resulting configuration will be: The commands available are consistent, but vary based on the type of the value being defined. All types (maps, arrays, values) support: Maps support the following instructions: Arrays support the following instructions: Default merging behaviors: An example showing using a secret: The order of the instructions doesn't matter, nor does extra spaces around the instructions. You may comma separate them, or you may just use a space. But you can only have one or two instructions (one MUST be secret if there are two. Secrets are primarily there so that if you want to output your configuration and everything is marked as secret correctly, you can get a redacted configuration file with minimal work. It's also handy if you output your configuration values into a log so you don't accidentally leak your secrets. Examples of decoders exist in the extensions/decoders directory. Of interest are the `env` decoder that provides an Option, and the `yaml` decoder that is simply a decoder. In psychology, gestalt is a way of thinking about data via patterns and configuration. It's a also somewhat common word. gostalt is pretty good, except there were still several things that used it, including a go framework. This goschtalt project is the only response google returned as of Aug 12, 2022.
Package goschtalt is a lightweight and flexible configuration registry that makes it easy to configure an application. Goschtalt is a fresh take on application configuration now that Go has improved filesystem abstraction, modules, and the Option pattern. At its core, Goschtalt is a low dependency library that provides configuration values via a small and customizable API. The configuration values can be merged using either the default semantics or specified on a parameter by parameter basis. The project contains several packages that are versioned together, but are otherwise independent (different go modules). They can be found here: https://github.com/schmidtw/goschtalt/tree/main/extensions/ For most of the decoders you can specify instructions for goschtalt's handling of the data fields by annotating the key portion. Here's a simple example in yaml: If this configuration data is merged with an existing configuration set: The resulting configuration will be: The commands available are consistent, but vary based on the type of the value being defined. All types (maps, arrays, values) support: Maps support the following instructions: Arrays support the following instructions: Default merging behaviors: An example showing using a secret: The order of the instructions doesn't matter, nor does extra spaces around the instructions. You may comma separate them, or you may just use a space. But you can only have one or two instructions (one MUST be secret if there are two. Secrets are primarily there so that if you want to output your configuration and everything is marked as secret correctly, you can get a redacted configuration file with minimal work. It's also handy if you output your configuration values into a log so you don't accidentally leak your secrets. Examples of decoders exist in the extensions/decoders directory. Of interest are the `env` decoder that provides an Option, and the `yaml` decoder that is simply a decoder. In psychology, gestalt is a way of thinking about data via patterns and configuration. It's a also somewhat common word. gostalt is pretty good, except there were still several things that used it, including a go framework. This goschtalt project is the only response google returned as of Aug 12, 2022.
Package spanner provides a client for reading and writing to Cloud Spanner databases. See the packages under admin for clients that operate on databases and instances. Note: This package is in beta. Some backwards-incompatible changes may occur. See https://cloud.google.com/spanner/docs/getting-started/go/ for an introduction to Cloud Spanner and additional help on using this API. See https://godoc.org/cloud.google.com/go for authentication, timeouts, connection pooling and similar aspects of this package. To start working with this package, create a client that refers to the database of interest: Remember to close the client after use to free up the sessions in the session pool. Two Client methods, Apply and Single, work well for simple reads and writes. As a quick introduction, here we write a new row to the database and read it back: All the methods used above are discussed in more detail below. Every Cloud Spanner row has a unique key, composed of one or more columns. Construct keys with a literal of type Key: The keys of a Cloud Spanner table are ordered. You can specify ranges of keys using the KeyRange type: By default, a KeyRange includes its start key but not its end key. Use the Kind field to specify other boundary conditions: A KeySet represents a set of keys. A single Key or KeyRange can act as a KeySet. Use the KeySets function to build the union of several KeySets: AllKeys returns a KeySet that refers to all the keys in a table: All Cloud Spanner reads and writes occur inside transactions. There are two types of transactions, read-only and read-write. Read-only transactions cannot change the database, do not acquire locks, and may access either the current database state or states in the past. Read-write transactions can read the database before writing to it, and always apply to the most recent database state. The simplest and fastest transaction is a ReadOnlyTransaction that supports a single read operation. Use Client.Single to create such a transaction. You can chain the call to Single with a call to a Read method. When you only want one row whose key you know, use ReadRow. Provide the table name, key, and the columns you want to read: Read multiple rows with the Read method. It takes a table name, KeySet, and list of columns: Read returns a RowIterator. You can call the Do method on the iterator and pass a callback: RowIterator also follows the standard pattern for the Google Cloud Client Libraries: Always call Stop when you finish using an iterator this way, whether or not you iterate to the end. (Failing to call Stop could lead you to exhaust the database's session quota.) To read rows with an index, use ReadUsingIndex. The most general form of reading uses SQL statements. Construct a Statement with NewStatement, setting any parameters using the Statement's Params map: You can also construct a Statement directly with a struct literal, providing your own map of parameters. Use the Query method to run the statement and obtain an iterator: Once you have a Row, via an iterator or a call to ReadRow, you can extract column values in several ways. Pass in a pointer to a Go variable of the appropriate type when you extract a value. You can extract by column position or name: You can extract all the columns at once: Or you can define a Go struct that corresponds to your columns, and extract into that: For Cloud Spanner columns that may contain NULL, use one of the NullXXX types, like NullString: To perform more than one read in a transaction, use ReadOnlyTransaction: You must call Close when you are done with the transaction. Cloud Spanner read-only transactions conceptually perform all their reads at a single moment in time, called the transaction's read timestamp. Once a read has started, you can call ReadOnlyTransaction's Timestamp method to obtain the read timestamp. By default, a transaction will pick the most recent time (a time where all previously committed transactions are visible) for its reads. This provides the freshest data, but may involve some delay. You can often get a quicker response if you are willing to tolerate "stale" data. You can control the read timestamp selected by a transaction by calling the WithTimestampBound method on the transaction before using it. For example, to perform a query on data that is at most one minute stale, use See the documentation of TimestampBound for more details. To write values to a Cloud Spanner database, construct a Mutation. The spanner package has functions for inserting, updating and deleting rows. Except for the Delete methods, which take a Key or KeyRange, each mutation-building function comes in three varieties. One takes lists of columns and values along with the table name: One takes a map from column names to values: And the third accepts a struct value, and determines the columns from the struct field names: To apply a list of mutations to the database, use Apply: If you need to read before writing in a single transaction, use a ReadWriteTransaction. ReadWriteTransactions may abort and need to be retried. You pass in a function to ReadWriteTransaction, and the client will handle the retries automatically. Use the transaction's BufferWrite method to buffer mutations, which will all be executed at the end of the transaction: Spanner supports DML statements like INSERT, UPDATE and DELETE. Use ReadWriteTransaction.Update to run DML statements. It returns the number of rows affected. (You can call use ReadWriteTransaction.Query with a DML statement. The first call to Next on the resulting RowIterator will return iterator.Done, and the RowCount field of the iterator will hold the number of affected rows.) For large databases, it may be more efficient to partition the DML statement. Use client.PartitionedUpdate to run a DML statement in this way. Not all DML statements can be partitioned. This client has been instrumented to use OpenCensus tracing (http://opencensus.io). To enable tracing, see "Enabling Tracing for a Program" at https://godoc.org/go.opencensus.io/trace. OpenCensus tracing requires Go 1.8 or higher.
Package maps provides a client library for the Google Maps Web Service APIs. Please see https://developers.google.com/maps/documentation/webservices/ for an overview of the Maps Web Service API suite.
Package maps provides a client library for the Google Maps Web Service APIs. Please see https://developers.google.com/maps/documentation/webservices/ for an overview of the Maps Web Service API suite.
Package maps provides a client library for the Google Maps Web Service APIs. Please see https://developers.google.com/maps/documentation/webservices/ for an overview of the Maps Web Service API suite.
Package maps provides a client library for the Google Maps Web Service APIs. Please see https://developers.google.com/maps/documentation/webservices/ for an overview of the Maps Web Service API suite.
Package maps provides a client library for the Google Maps Web Service APIs. Please see https://developers.google.com/maps/documentation/webservices/ for an overview of the Maps Web Service API suite.