Package sdk is the official AWS SDK for the Go programming language. The AWS SDK for Go provides APIs and utilities that developers can use to build Go applications that use AWS services, such as Amazon Elastic Compute Cloud (Amazon EC2) and Amazon Simple Storage Service (Amazon S3). The SDK removes the complexity of coding directly against a web service interface. It hides a lot of the lower-level plumbing, such as authentication, request retries, and error handling. The SDK also includes helpful utilities on top of the AWS APIs that add additional capabilities and functionality. For example, the Amazon S3 Download and Upload Manager will automatically split up large objects into multiple parts and transfer them concurrently. See the s3manager package documentation for more information. https://docs.aws.amazon.com/sdk-for-go/api/service/s3/s3manager/ Checkout the Getting Started Guide and API Reference Docs detailed the SDK's components and details on each AWS client the SDK supports. The Getting Started Guide provides examples and detailed description of how to get setup with the SDK. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/welcome.html The API Reference Docs include a detailed breakdown of the SDK's components such as utilities and AWS clients. Use this as a reference of the Go types included with the SDK, such as AWS clients, API operations, and API parameters. https://docs.aws.amazon.com/sdk-for-go/api/ The SDK is composed of two main components, SDK core, and service clients. The SDK core packages are all available under the aws package at the root of the SDK. Each client for a supported AWS service is available within its own package under the service folder at the root of the SDK. aws - SDK core, provides common shared types such as Config, Logger, and utilities to make working with API parameters easier. awserr - Provides the error interface that the SDK will use for all errors that occur in the SDK's processing. This includes service API response errors as well. The Error type is made up of a code and message. Cast the SDK's returned error type to awserr.Error and call the Code method to compare returned error to specific error codes. See the package's documentation for additional values that can be extracted such as RequestId. credentials - Provides the types and built in credentials providers the SDK will use to retrieve AWS credentials to make API requests with. Nested under this folder are also additional credentials providers such as stscreds for assuming IAM roles, and ec2rolecreds for EC2 Instance roles. endpoints - Provides the AWS Regions and Endpoints metadata for the SDK. Use this to lookup AWS service endpoint information such as which services are in a region, and what regions a service is in. Constants are also provided for all region identifiers, e.g UsWest2RegionID for "us-west-2". session - Provides initial default configuration, and load configuration from external sources such as environment and shared credentials file. request - Provides the API request sending, and retry logic for the SDK. This package also includes utilities for defining your own request retryer, and configuring how the SDK processes the request. service - Clients for AWS services. All services supported by the SDK are available under this folder. The SDK includes the Go types and utilities you can use to make requests to AWS service APIs. Within the service folder at the root of the SDK you'll find a package for each AWS service the SDK supports. All service clients follows a common pattern of creation and usage. When creating a client for an AWS service you'll first need to have a Session value constructed. The Session provides shared configuration that can be shared between your service clients. When service clients are created you can pass in additional configuration via the aws.Config type to override configuration provided by in the Session to create service client instances with custom configuration. Once the service's client is created you can use it to make API requests the AWS service. These clients are safe to use concurrently. In the AWS SDK for Go, you can configure settings for service clients, such as the log level and maximum number of retries. Most settings are optional; however, for each service client, you must specify a region and your credentials. The SDK uses these values to send requests to the correct AWS region and sign requests with the correct credentials. You can specify these values as part of a session or as environment variables. See the SDK's configuration guide for more information. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html See the session package documentation for more information on how to use Session with the SDK. https://docs.aws.amazon.com/sdk-for-go/api/aws/session/ See the Config type in the aws package for more information on configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config When using the SDK you'll generally need your AWS credentials to authenticate with AWS services. The SDK supports multiple methods of supporting these credentials. By default the SDK will source credentials automatically from its default credential chain. See the session package for more information on this chain, and how to configure it. The common items in the credential chain are the following: Environment Credentials - Set of environment variables that are useful when sub processes are created for specific roles. Shared Credentials file (~/.aws/credentials) - This file stores your credentials based on a profile name and is useful for local development. EC2 Instance Role Credentials - Use EC2 Instance Role to assign credentials to application running on an EC2 instance. This removes the need to manage credential files in production. Credentials can be configured in code as well by setting the Config's Credentials value to a custom provider or using one of the providers included with the SDK to bypass the default credential chain and use a custom one. This is helpful when you want to instruct the SDK to only use a specific set of credentials or providers. This example creates a credential provider for assuming an IAM role, "myRoleARN" and configures the S3 service client to use that role for API requests. See the credentials package documentation for more information on credential providers included with the SDK, and how to customize the SDK's usage of credentials. https://docs.aws.amazon.com/sdk-for-go/api/aws/credentials The SDK has support for the shared configuration file (~/.aws/config). This support can be enabled by setting the environment variable, "AWS_SDK_LOAD_CONFIG=1", or enabling the feature in code when creating a Session via the Option's SharedConfigState parameter. In addition to the credentials you'll need to specify the region the SDK will use to make AWS API requests to. In the SDK you can specify the region either with an environment variable, or directly in code when a Session or service client is created. The last value specified in code wins if the region is specified multiple ways. To set the region via the environment variable set the "AWS_REGION" to the region you want to the SDK to use. Using this method to set the region will allow you to run your application in multiple regions without needing additional code in the application to select the region. The endpoints package includes constants for all regions the SDK knows. The values are all suffixed with RegionID. These values are helpful, because they reduce the need to type the region string manually. To set the region on a Session use the aws package's Config struct parameter Region to the AWS region you want the service clients created from the session to use. This is helpful when you want to create multiple service clients, and all of the clients make API requests to the same region. See the endpoints package for the AWS Regions and Endpoints metadata. https://docs.aws.amazon.com/sdk-for-go/api/aws/endpoints/ In addition to setting the region when creating a Session you can also set the region on a per service client bases. This overrides the region of a Session. This is helpful when you want to create service clients in specific regions different from the Session's region. See the Config type in the aws package for more information and additional options such as setting the Endpoint, and other service client configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config Once the client is created you can make an API request to the service. Each API method takes a input parameter, and returns the service response and an error. The SDK provides methods for making the API call in multiple ways. In this list we'll use the S3 ListObjects API as an example for the different ways of making API requests. ListObjects - Base API operation that will make the API request to the service. ListObjectsRequest - API methods suffixed with Request will construct the API request, but not send it. This is also helpful when you want to get a presigned URL for a request, and share the presigned URL instead of your application making the request directly. ListObjectsPages - Same as the base API operation, but uses a callback to automatically handle pagination of the API's response. ListObjectsWithContext - Same as base API operation, but adds support for the Context pattern. This is helpful for controlling the canceling of in flight requests. See the Go standard library context package for more information. This method also takes request package's Option functional options as the variadic argument for modifying how the request will be made, or extracting information from the raw HTTP response. ListObjectsPagesWithContext - same as ListObjectsPages, but adds support for the Context pattern. Similar to ListObjectsWithContext this method also takes the request package's Option function option types as the variadic argument. In addition to the API operations the SDK also includes several higher level methods that abstract checking for and waiting for an AWS resource to be in a desired state. In this list we'll use WaitUntilBucketExists to demonstrate the different forms of waiters. WaitUntilBucketExists. - Method to make API request to query an AWS service for a resource's state. Will return successfully when that state is accomplished. WaitUntilBucketExistsWithContext - Same as WaitUntilBucketExists, but adds support for the Context pattern. In addition these methods take request package's WaiterOptions to configure the waiter, and how underlying request will be made by the SDK. The API method will document which error codes the service might return for the operation. These errors will also be available as const strings prefixed with "ErrCode" in the service client's package. If there are no errors listed in the API's SDK documentation you'll need to consult the AWS service's API documentation for the errors that could be returned. Pagination helper methods are suffixed with "Pages", and provide the functionality needed to round trip API page requests. Pagination methods take a callback function that will be called for each page of the API's response. Waiter helper methods provide the functionality to wait for an AWS resource state. These methods abstract the logic needed to to check the state of an AWS resource, and wait until that resource is in a desired state. The waiter will block until the resource is in the state that is desired, an error occurs, or the waiter times out. If a resource times out the error code returned will be request.WaiterResourceNotReadyErrorCode. This example shows a complete working Go file which will upload a file to S3 and use the Context pattern to implement timeout logic that will cancel the request if it takes too long. This example highlights how to use sessions, create a service client, make a request, handle the error, and process the response.
Package sdk is the official AWS SDK v2 for the Go programming language. aws-sdk-go-v2 is the the v2 of the AWS SDK for the Go programming language. The best way to get started working with the SDK is to use `go get` to add the SDK and desired service clients to your Go dependencies explicitly. This example shows how you can use the v2 SDK to make an API request using the SDK's Amazon DynamoDB client.
Package sso provides the API client, operations, and parameter types for AWS Single Sign-On. AWS IAM Identity Center (successor to AWS Single Sign-On) Portal is a web service that makes it easy for you to assign user access to IAM Identity Center resources such as the AWS access portal. Users can get AWS account applications and roles assigned to them and get federated into the application. Although AWS Single Sign-On was renamed, the sso and identitystore API namespaces will continue to retain their original name for backward compatibility purposes. For more information, see IAM Identity Center rename. This reference guide describes the IAM Identity Center Portal operations that you can call programatically and includes detailed information on data types and errors. AWS provides SDKs that consist of libraries and sample code for various programming languages and platforms, such as Java, Ruby, .Net, iOS, or Android. The SDKs provide a convenient way to create programmatic access to IAM Identity Center and other AWS services. For more information about the AWS SDKs, including how to download and install them, see Tools for Amazon Web Services.
Package imds provides the API client for interacting with the Amazon EC2 Instance Metadata Service. All Client operation calls have a default timeout. If the operation is not completed before this timeout expires, the operation will be canceled. This timeout can be overridden through the following: See the EC2 IMDS user guide for more information on using the API. https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
Package ssooidc provides the API client, operations, and parameter types for AWS SSO OIDC. IAM Identity Center OpenID Connect (OIDC) is a web service that enables a client (such as CLI or a native application) to register with IAM Identity Center. The service also enables the client to fetch the user’s access token upon successful authentication and authorization with IAM Identity Center. IAM Identity Center uses the sso and identitystore API namespaces. Before you begin using this guide, we recommend that you first review the following important information about how the IAM Identity Center OIDC service works. The IAM Identity Center OIDC service currently implements only the portions of the OAuth 2.0 Device Authorization Grant standard (https://tools.ietf.org/html/rfc8628 ) that are necessary to enable single sign-on authentication with the CLI. With older versions of the CLI, the service only emits OIDC access tokens, so to obtain a new token, users must explicitly re-authenticate. To access the OIDC flow that supports token refresh and doesn’t require re-authentication, update to the latest CLI version (1.27.10 for CLI V1 and 2.9.0 for CLI V2) with support for OIDC token refresh and configurable IAM Identity Center session durations. For more information, see Configure Amazon Web Services access portal session duration. The access tokens provided by this service grant access to all Amazon Web Services account entitlements assigned to an IAM Identity Center user, not just a particular application. The documentation in this guide does not describe the mechanism to convert the access token into Amazon Web Services Auth (“sigv4”) credentials for use with IAM-protected Amazon Web Services service endpoints. For more information, see GetRoleCredentialsin the IAM Identity Center Portal API Reference Guide. For general information about IAM Identity Center, see What is IAM Identity Center? in the IAM Identity Center User Guide.
Package s3 provides the API client, operations, and parameter types for Amazon Simple Storage Service.
Package ecr provides the API client, operations, and parameter types for Amazon Elastic Container Registry. Amazon Elastic Container Registry (Amazon ECR) is a managed container image registry service. Customers can use the familiar Docker CLI, or their preferred client, to push, pull, and manage images. Amazon ECR provides a secure, scalable, and reliable registry for your Docker or Open Container Initiative (OCI) images. Amazon ECR supports private repositories with resource-based permissions using IAM so that specific users or Amazon EC2 instances can access repositories and images. Amazon ECR has service endpoints in each supported Region. For more information, see Amazon ECR endpointsin the Amazon Web Services General Reference.
Package ec2 provides the API client, operations, and parameter types for Amazon Elastic Compute Cloud. You can access the features of Amazon Elastic Compute Cloud (Amazon EC2) programmatically. For more information, see the Amazon EC2 Developer Guide.
Package route53 provides the API client, operations, and parameter types for Amazon Route 53. Amazon Route 53 is a highly available and scalable Domain Name System (DNS) web service. You can use Route 53 to: For more information, see How domain registration works. For more information, see How internet traffic is routed to your website or web application. For more information, see How Route 53 checks the health of your resources.
Package ecrpublic provides the API client, operations, and parameter types for Amazon Elastic Container Registry Public. Amazon Elastic Container Registry Public (Amazon ECR Public) is a managed container image registry service. Amazon ECR provides both public and private registries to host your container images. You can use the Docker CLI or your preferred client to push, pull, and manage images. Amazon ECR provides a secure, scalable, and reliable registry for your Docker or Open Container Initiative (OCI) images. Amazon ECR supports public repositories with this API. For information about the Amazon ECR API for private repositories, see Amazon Elastic Container Registry API Reference.
Package kms provides the API client, operations, and parameter types for AWS Key Management Service. Key Management Service (KMS) is an encryption and key management web service. This guide describes the KMS operations that you can call programmatically. For general information about KMS, see the Key Management Service Developer Guide. KMS has replaced the term customer master key (CMK) with KMS key and KMS key. The concept has not changed. To prevent breaking changes, KMS is keeping some variations of this term. Amazon Web Services provides SDKs that consist of libraries and sample code for various programming languages and platforms (Java, Ruby, .Net, macOS, Android, etc.). The SDKs provide a convenient way to create programmatic access to KMS and other Amazon Web Services services. For example, the SDKs take care of tasks such as signing requests (see below), managing errors, and retrying requests automatically. For more information about the Amazon Web Services SDKs, including how to download and install them, see Tools for Amazon Web Services. We recommend that you use the Amazon Web Services SDKs to make programmatic API calls to KMS. If you need to use FIPS 140-2 validated cryptographic modules when communicating with Amazon Web Services, use the FIPS endpoint in your preferred Amazon Web Services Region. For more information about the available FIPS endpoints, see Service endpointsin the Key Management Service topic of the Amazon Web Services General Reference. All KMS API calls must be signed and be transmitted using Transport Layer Security (TLS). KMS recommends you always use the latest supported TLS version. Clients must also support cipher suites with Perfect Forward Secrecy (PFS) such as Ephemeral Diffie-Hellman (DHE) or Elliptic Curve Ephemeral Diffie-Hellman (ECDHE). Most modern systems such as Java 7 and later support these modes. Requests must be signed using an access key ID and a secret access key. We strongly recommend that you do not use your Amazon Web Services account root access key ID and secret access key for everyday work. You can use the access key ID and secret access key for an IAM user or you can use the Security Token Service (STS) to generate temporary security credentials and use those to sign requests. All KMS requests must be signed with Signature Version 4. KMS supports CloudTrail, a service that logs Amazon Web Services API calls and related events for your Amazon Web Services account and delivers them to an Amazon S3 bucket that you specify. By using the information collected by CloudTrail, you can determine what requests were made to KMS, who made the request, when it was made, and so on. To learn more about CloudTrail, including how to turn it on and find your log files, see the CloudTrail User Guide. For more information about credentials and request signing, see the following: Amazon Web Services Security Credentials Temporary Security Credentials Signature Version 4 Signing Process Of the API operations discussed in this guide, the following will prove the most useful for most applications. You will likely perform operations other than these, such as creating keys and assigning policies, by using the console.
Package cloudwatch provides the API client, operations, and parameter types for Amazon CloudWatch. Amazon CloudWatch monitors your Amazon Web Services (Amazon Web Services) resources and the applications you run on Amazon Web Services in real time. You can use CloudWatch to collect and track metrics, which are the variables you want to measure for your resources and applications. CloudWatch alarms send notifications or automatically change the resources you are monitoring based on rules that you define. For example, you can monitor the CPU usage and disk reads and writes of your Amazon EC2 instances. Then, use this data to determine whether you should launch additional instances to handle increased load. You can also use this data to stop under-used instances to save money. In addition to monitoring the built-in metrics that come with Amazon Web Services, you can monitor your own custom metrics. With CloudWatch, you gain system-wide visibility into resource utilization, application performance, and operational health.
Package dynamodb provides the API client, operations, and parameter types for Amazon DynamoDB. Amazon DynamoDB is a fully managed NoSQL database service that provides fast and predictable performance with seamless scalability. DynamoDB lets you offload the administrative burdens of operating and scaling a distributed database, so that you don't have to worry about hardware provisioning, setup and configuration, replication, software patching, or cluster scaling. With DynamoDB, you can create database tables that can store and retrieve any amount of data, and serve any level of request traffic. You can scale up or scale down your tables' throughput capacity without downtime or performance degradation, and use the Amazon Web Services Management Console to monitor resource utilization and performance metrics. DynamoDB automatically spreads the data and traffic for your tables over a sufficient number of servers to handle your throughput and storage requirements, while maintaining consistent and fast performance. All of your data is stored on solid state disks (SSDs) and automatically replicated across multiple Availability Zones in an Amazon Web Services Region, providing built-in high availability and data durability.
Package sqs provides the API client, operations, and parameter types for Amazon Simple Queue Service. Welcome to the Amazon SQS API Reference. Amazon SQS is a reliable, highly-scalable hosted queue for storing messages as they travel between applications or microservices. Amazon SQS moves data between distributed application components and helps you decouple these components. For information on the permissions you need to use this API, see Identity and access management in the Amazon SQS Developer Guide. You can use Amazon Web Services SDKs to access Amazon SQS using your favorite programming language. The SDKs perform tasks such as the following automatically: Cryptographically sign your service requests Retry requests Handle error responses Amazon SQS Product Page Making API Requests Amazon SQS Message Attributes Amazon SQS Dead-Letter Queues Amazon SQS in the Command Line Interface Regions and Endpoints
Package dynamodbstreams provides the API client, operations, and parameter types for Amazon DynamoDB Streams. Amazon DynamoDB Streams provides API actions for accessing streams and processing stream records. To learn more about application development with Streams, see Capturing Table Activity with DynamoDB Streamsin the Amazon DynamoDB Developer Guide.
Package ssm provides the API client, operations, and parameter types for Amazon Simple Systems Manager (SSM). Amazon Web Services Systems Manager is the operations hub for your Amazon Web Services applications and resources and a secure end-to-end management solution for hybrid cloud environments that enables safe and secure operations at scale. This reference is intended to be used with the Amazon Web Services Systems Manager User Guide. To get started, see Setting up Amazon Web Services Systems Manager. Related resources For information about each of the capabilities that comprise Systems Manager, see Systems Manager capabilitiesin the Amazon Web Services Systems Manager User Guide. For details about predefined runbooks for Automation, a capability of Amazon Web Services Systems Manager, see the Systems Manager Automation runbook reference. For information about AppConfig, a capability of Systems Manager, see the AppConfig User Guide and the AppConfig API Reference. For information about Incident Manager, a capability of Systems Manager, see the Systems Manager Incident Manager User Guideand the Systems Manager Incident Manager API Reference.
Package secretsmanager provides the API client, operations, and parameter types for AWS Secrets Manager. Amazon Web Services Secrets Manager provides a service to enable you to store, manage, and retrieve, secrets. This guide provides descriptions of the Secrets Manager API. For more information about using this service, see the Amazon Web Services Secrets Manager User Guide. This version of the Secrets Manager API Reference documents the Secrets Manager API version 2017-10-17. For a list of endpoints, see Amazon Web Services Secrets Manager endpoints. We welcome your feedback. Send your comments to awssecretsmanager-feedback@amazon.com, or post your feedback and questions in the Amazon Web Services Secrets Manager Discussion Forum. For more information about the Amazon Web Services Discussion Forums, see Forums Help. Amazon Web Services Secrets Manager supports Amazon Web Services CloudTrail, a service that records Amazon Web Services API calls for your Amazon Web Services account and delivers log files to an Amazon S3 bucket. By using information that's collected by Amazon Web Services CloudTrail, you can determine the requests successfully made to Secrets Manager, who made the request, when it was made, and so on. For more about Amazon Web Services Secrets Manager and support for Amazon Web Services CloudTrail, see Logging Amazon Web Services Secrets Manager Events with Amazon Web Services CloudTrailin the Amazon Web Services Secrets Manager User Guide. To learn more about CloudTrail, including enabling it and find your log files, see the Amazon Web Services CloudTrail User Guide.
Package attributevalue provides marshaling and unmarshaling utilities to convert between Go types and Amazon DynamoDB AttributeValues. These utilities allow you to marshal slices, maps, structs, and scalar values to and from AttributeValue type. These utilities make it easier to convert between AttributeValue and Go types when working with DynamoDB resources. This package only converts between Go types and DynamoDB AttributeValue. See the feature/dynamodbstreams/attributevalue package for converting to DynamoDBStreams AttributeValue types. The FromDynamoStreamsDBMap, FromDynamoStreamsDBList, and FromDynamoDBStreams functions provide the conversion utilities to convert a DynamoDBStreams AttributeValue type to a DynamoDB AttributeValue type. Use these utilities when you need to convert the AttributeValue type between the two APIs. To marshal a Go type to an AttributeValue you can use the Marshal, MarshalList, and MarshalMap functions. The List and Map functions are specialized versions of the Marshal for serializing slices and maps of Attributevalues. The following example uses MarshalMap to convert a Go struct, Record to a AttributeValue. The AttributeValue value is then used as input to the PutItem operation call. To unmarshal an AttributeValue to a Go type you can use the Unmarshal, UnmarshalList, UnmarshalMap, and UnmarshalListOfMaps functions. The List and Map functions are specialized versions of the Unmarshal function for unmarshal slices and maps of Attributevalues. The following example will unmarshal Items result from the DynamoDB's Scan API operation. The Items returned will be unmarshaled into the slice of the Records struct. The AttributeValue Marshal and Unmarshal functions support the `dynamodbav` struct tag by default. Additional tags can be enabled with the EncoderOptions and DecoderOptions, TagKey option. See the Marshal and Unmarshal function for information on how struct tags and fields are marshaled and unmarshaled.
Package kinesis provides the API client, operations, and parameter types for Amazon Kinesis. Amazon Kinesis Data Streams is a managed service that scales elastically for real-time processing of streaming big data.
Package sns provides the API client, operations, and parameter types for Amazon Simple Notification Service. Amazon Simple Notification Service (Amazon SNS) is a web service that enables you to build distributed web-enabled applications. Applications can use Amazon SNS to easily push real-time notification messages to interested subscribers over multiple delivery protocols. For more information about this product see the Amazon SNS product page. For detailed information about Amazon SNS features and their associated API calls, see the Amazon SNS Developer Guide. For information on the permissions you need to use this API, see Identity and access management in Amazon SNS in the Amazon SNS Developer Guide. We also provide SDKs that enable you to access Amazon SNS from your preferred programming language. The SDKs contain functionality that automatically takes care of tasks such as: cryptographically signing your service requests, retrying requests, and handling error responses. For a list of available SDKs, go to Tools for Amazon Web Services.
Package cloudwatchlogs provides the API client, operations, and parameter types for Amazon CloudWatch Logs. You can use Amazon CloudWatch Logs to monitor, store, and access your log files from EC2 instances, CloudTrail, and other sources. You can then retrieve the associated log data from CloudWatch Logs using the CloudWatch console. Alternatively, you can use CloudWatch Logs commands in the Amazon Web Services CLI, CloudWatch Logs API, or CloudWatch Logs SDK. You can use CloudWatch Logs to: Monitor logs from EC2 instances in real time: You can use CloudWatch Logs to monitor applications and systems using log data. For example, CloudWatch Logs can track the number of errors that occur in your application logs. Then, it can send you a notification whenever the rate of errors exceeds a threshold that you specify. CloudWatch Logs uses your log data for monitoring so no code changes are required. For example, you can monitor application logs for specific literal terms (such as "NullReferenceException"). You can also count the number of occurrences of a literal term at a particular position in log data (such as "404" status codes in an Apache access log). When the term you are searching for is found, CloudWatch Logs reports the data to a CloudWatch metric that you specify. Monitor CloudTrail logged events: You can create alarms in CloudWatch and receive notifications of particular API activity as captured by CloudTrail. You can use the notification to perform troubleshooting. Archive log data: You can use CloudWatch Logs to store your log data in highly durable storage. You can change the log retention setting so that any log events earlier than this setting are automatically deleted. The CloudWatch Logs agent helps to quickly send both rotated and non-rotated log data off of a host and into the log service. You can then access the raw log data when you need it.
Package iam provides the API client, operations, and parameter types for AWS Identity and Access Management. Identity and Access Management (IAM) is a web service for securely controlling access to Amazon Web Services services. With IAM, you can centrally manage users, security credentials such as access keys, and permissions that control which Amazon Web Services resources users and applications can access. For more information about IAM, see Identity and Access Management (IAM)and the Identity and Access Management User Guide.
Package lambda provides the API client, operations, and parameter types for AWS Lambda. Lambda is a compute service that lets you run code without provisioning or managing servers. Lambda runs your code on a high-availability compute infrastructure and performs all of the administration of the compute resources, including server and operating system maintenance, capacity provisioning and automatic scaling, code monitoring and logging. With Lambda, you can run code for virtually any type of application or backend service. For more information about the Lambda service, see What is Lambdain the Lambda Developer Guide. The Lambda API Reference provides information about each of the API methods, including details about the parameters in each API request and response. You can use Software Development Kits (SDKs), Integrated Development Environment (IDE) Toolkits, and command line tools to access the API. For installation instructions, see Tools for Amazon Web Services. For a list of Region-specific endpoints that Lambda supports, see Lambda endpoints and quotas in the Amazon Web Services General Reference.. When making the API calls, you will need to authenticate your request by providing a signature. Lambda supports signature version 4. For more information, see Signature Version 4 signing processin the Amazon Web Services General Reference.. Because Amazon Web Services SDKs use the CA certificates from your computer, changes to the certificates on the Amazon Web Services servers can cause connection failures when you attempt to use an SDK. You can prevent these failures by keeping your computer's CA certificates and operating system up-to-date. If you encounter this issue in a corporate environment and do not manage your own computer, you might need to ask an administrator to assist with the update process. The following list shows minimum operating system and Java versions: Microsoft Windows versions that have updates from January 2005 or later installed contain at least one of the required CAs in their trust list. Mac OS X 10.4 with Java for Mac OS X 10.4 Release 5 (February 2007), Mac OS X 10.5 (October 2007), and later versions contain at least one of the required CAs in their trust list. Red Hat Enterprise Linux 5 (March 2007), 6, and 7 and CentOS 5, 6, and 7 all contain at least one of the required CAs in their default trusted CA list. Java 1.4.2_12 (May 2006), 5 Update 2 (March 2005), and all later versions, including Java 6 (December 2006), 7, and 8, contain at least one of the required CAs in their default trusted CA list. When accessing the Lambda management console or Lambda API endpoints, whether through browsers or programmatically, you will need to ensure your client machines support any of the following CAs: Amazon Root CA 1 Starfield Services Root Certificate Authority - G2 Starfield Class 2 Certification Authority Root certificates from the first two authorities are available from Amazon trust services, but keeping your computer up-to-date is the more straightforward solution. To learn more about ACM-provided certificates, see Amazon Web Services Certificate Manager FAQs.
Package rds provides the API client, operations, and parameter types for Amazon Relational Database Service. Amazon Relational Database Service (Amazon RDS) is a web service that makes it easier to set up, operate, and scale a relational database in the cloud. It provides cost-efficient, resizeable capacity for an industry-standard relational database and manages common database administration tasks, freeing up developers to focus on what makes their applications and businesses unique. Amazon RDS gives you access to the capabilities of a MySQL, MariaDB, PostgreSQL, Microsoft SQL Server, Oracle, Db2, or Amazon Aurora database server. These capabilities mean that the code, applications, and tools you already use today with your existing databases work with Amazon RDS without modification. Amazon RDS automatically backs up your database and maintains the database software that powers your DB instance. Amazon RDS is flexible: you can scale your DB instance's compute resources and storage capacity to meet your application's demand. As with all Amazon Web Services, there are no up-front investments, and you pay only for the resources you use. This interface reference for Amazon RDS contains documentation for a programming or command line interface you can use to manage Amazon RDS. Amazon RDS is asynchronous, which means that some interfaces might require techniques such as polling or callback functions to determine when a command has been applied. In this reference, the parameter descriptions indicate whether a command is applied immediately, on the next instance reboot, or during the maintenance window. The reference structure is as follows, and we list following some related topics from the user guide. Amazon RDS API Reference For the alphabetical list of API actions, see API Actions. For the alphabetical list of data types, see Data Types. For a list of common query parameters, see Common Parameters. For descriptions of the error codes, see Common Errors. Amazon RDS User Guide For a summary of the Amazon RDS interfaces, see Available RDS Interfaces. For more information about how to use the Query API, see Using the Query API.
Package eks provides the API client, operations, and parameter types for Amazon Elastic Kubernetes Service. Amazon Elastic Kubernetes Service (Amazon EKS) is a managed service that makes it easy for you to run Kubernetes on Amazon Web Services without needing to setup or maintain your own Kubernetes control plane. Kubernetes is an open-source system for automating the deployment, scaling, and management of containerized applications. Amazon EKS runs up-to-date versions of the open-source Kubernetes software, so you can use all the existing plugins and tooling from the Kubernetes community. Applications running on Amazon EKS are fully compatible with applications running on any standard Kubernetes environment, whether running in on-premises data centers or public clouds. This means that you can easily migrate any standard Kubernetes application to Amazon EKS without any code modification required.
Package ecs provides the API client, operations, and parameter types for Amazon EC2 Container Service. Amazon Elastic Container Service (Amazon ECS) is a highly scalable, fast, container management service. It makes it easy to run, stop, and manage Docker containers. You can host your cluster on a serverless infrastructure that's managed by Amazon ECS by launching your services or tasks on Fargate. For more control, you can host your tasks on a cluster of Amazon Elastic Compute Cloud (Amazon EC2) or External (on-premises) instances that you manage. Amazon ECS makes it easy to launch and stop container-based applications with simple API calls. This makes it easy to get the state of your cluster from a centralized service, and gives you access to many familiar Amazon EC2 features. You can use Amazon ECS to schedule the placement of containers across your cluster based on your resource needs, isolation policies, and availability requirements. With Amazon ECS, you don't need to operate your own cluster management and configuration management systems. You also don't need to worry about scaling your management infrastructure.
Package cloudtrail provides the API client, operations, and parameter types for AWS CloudTrail. This is the CloudTrail API Reference. It provides descriptions of actions, data types, common parameters, and common errors for CloudTrail. CloudTrail is a web service that records Amazon Web Services API calls for your Amazon Web Services account and delivers log files to an Amazon S3 bucket. The recorded information includes the identity of the user, the start time of the Amazon Web Services API call, the source IP address, the request parameters, and the response elements returned by the service. As an alternative to the API, you can use one of the Amazon Web Services SDKs, which consist of libraries and sample code for various programming languages and platforms (Java, Ruby, .NET, iOS, Android, etc.). The SDKs provide programmatic access to CloudTrail. For example, the SDKs handle cryptographically signing requests, managing errors, and retrying requests automatically. For more information about the Amazon Web Services SDKs, including how to download and install them, see Tools to Build on Amazon Web Services. See the CloudTrail User Guide for information about the data that is included with each Amazon Web Services API call listed in the log files.
Package apigateway provides the API client, operations, and parameter types for Amazon API Gateway. Amazon API Gateway helps developers deliver robust, secure, and scalable mobile and web application back ends. API Gateway allows developers to securely connect mobile and web applications to APIs that run on Lambda, Amazon EC2, or other publicly addressable web services that are hosted outside of AWS.
Package cloudformation provides the API client, operations, and parameter types for AWS CloudFormation. CloudFormation allows you to create and manage Amazon Web Services infrastructure deployments predictably and repeatedly. You can use CloudFormation to leverage Amazon Web Services products, such as Amazon Elastic Compute Cloud, Amazon Elastic Block Store, Amazon Simple Notification Service, Elastic Load Balancing, and Amazon EC2 Auto Scaling to build highly reliable, highly scalable, cost-effective applications without creating or configuring the underlying Amazon Web Services infrastructure. With CloudFormation, you declare all your resources and dependencies in a template file. The template defines a collection of resources as a single unit called a stack. CloudFormation creates and deletes all member resources of the stack together and manages all dependencies between the resources for you. For more information about CloudFormation, see the CloudFormation product page. CloudFormation makes use of other Amazon Web Services products. If you need additional technical information about a specific Amazon Web Services product, you can find the product's technical documentation at docs.aws.amazon.com.
Package timestreamwrite provides the API client, operations, and parameter types for Amazon Timestream Write. Amazon Timestream is a fast, scalable, fully managed time-series database service that makes it easy to store and analyze trillions of time-series data points per day. With Timestream, you can easily store and analyze IoT sensor data to derive insights from your IoT applications. You can analyze industrial telemetry to streamline equipment management and maintenance. You can also store and analyze log data and metrics to improve the performance and availability of your applications. Timestream is built from the ground up to effectively ingest, process, and store time-series data. It organizes data to optimize query processing. It automatically scales based on the volume of data ingested and on the query volume to ensure you receive optimal performance while inserting and querying data. As your data grows over time, Timestream’s adaptive query processing engine spans across storage tiers to provide fast analysis while reducing costs.
Package autoscaling provides the API client, operations, and parameter types for Auto Scaling. Amazon EC2 Auto Scaling is designed to automatically launch and terminate EC2 instances based on user-defined scaling policies, scheduled actions, and health checks. For more information, see the Amazon EC2 Auto Scaling User Guide and the Amazon EC2 Auto Scaling API Reference.
Package elasticache provides the API client, operations, and parameter types for Amazon ElastiCache. Amazon ElastiCache is a web service that makes it easier to set up, operate, and scale a distributed cache in the cloud. With ElastiCache, customers get all of the benefits of a high-performance, in-memory cache with less of the administrative burden involved in launching and managing a distributed cache. The service makes setup, scaling, and cluster failure handling much simpler than in a self-managed cache deployment. In addition, through integration with Amazon CloudWatch, customers get enhanced visibility into the key performance statistics associated with their cache and can receive alarms if a part of their cache runs hot.
Package cloudfront provides the API client, operations, and parameter types for Amazon CloudFront. This is the Amazon CloudFront API Reference. This guide is for developers who need detailed information about CloudFront API actions, data types, and errors. For detailed information about CloudFront features, see the Amazon CloudFront Developer Guide.
Package redshift provides the API client, operations, and parameter types for Amazon Redshift. This is an interface reference for Amazon Redshift. It contains documentation for one of the programming or command line interfaces you can use to manage Amazon Redshift clusters. Note that Amazon Redshift is asynchronous, which means that some interfaces may require techniques, such as polling or asynchronous callback handlers, to determine when a command has been applied. In this reference, the parameter descriptions indicate whether a change is applied immediately, on the next instance reboot, or during the next maintenance window. For a summary of the Amazon Redshift cluster management interfaces, go to Using the Amazon Redshift Management Interfaces. Amazon Redshift manages all the work of setting up, operating, and scaling a data warehouse: provisioning capacity, monitoring and backing up the cluster, and applying patches and upgrades to the Amazon Redshift engine. You can focus on using your data to acquire new insights for your business and customers. If you are a first-time user of Amazon Redshift, we recommend that you begin by reading the Amazon Redshift Getting Started Guide. If you are a database developer, the Amazon Redshift Database Developer Guide explains how to design, build, query, and maintain the databases that make up your data warehouse.
Package efs provides the API client, operations, and parameter types for Amazon Elastic File System. Amazon Elastic File System (Amazon EFS) provides simple, scalable file storage for use with Amazon EC2 Linux and Mac instances in the Amazon Web Services Cloud. With Amazon EFS, storage capacity is elastic, growing and shrinking automatically as you add and remove files, so that your applications have the storage they need, when they need it. For more information, see the Amazon Elastic File System API Referenceand the Amazon Elastic File System User Guide.
Package athena provides the API client, operations, and parameter types for Amazon Athena. Amazon Athena is an interactive query service that lets you use standard SQL to analyze data directly in Amazon S3. You can point Athena at your data in Amazon S3 and run ad-hoc queries and get results in seconds. Athena is serverless, so there is no infrastructure to set up or manage. You pay only for the queries you run. Athena scales automatically—executing queries in parallel—so results are fast, even with large datasets and complex queries. For more information, see What is Amazon Athena in the Amazon Athena User Guide. If you connect to Athena using the JDBC driver, use version 1.1.0 of the driver or later with the Amazon Athena API. Earlier version drivers do not support the API. For more information and to download the driver, see Accessing Amazon Athena with JDBC.
Package elasticsearchservice provides the API client, operations, and parameter types for Amazon Elasticsearch Service. Use the Amazon Elasticsearch Configuration API to create, configure, and manage Elasticsearch domains. For sample code that uses the Configuration API, see the Amazon Elasticsearch Service Developer Guide. The guide also contains sample code for sending signed HTTP requests to the Elasticsearch APIs. The endpoint for configuration service requests is region-specific: es.region.amazonaws.com. For example, es.us-east-1.amazonaws.com. For a current list of supported regions and endpoints, see Regions and Endpoints.
Package workspaces provides the API client, operations, and parameter types for Amazon WorkSpaces. Amazon WorkSpaces enables you to provision virtual, cloud-based Microsoft Windows or Amazon Linux desktops for your users, known as WorkSpaces. WorkSpaces eliminates the need to procure and deploy hardware or install complex software. You can quickly add or remove users as your needs change. Users can access their virtual desktops from multiple devices or web browsers. This API Reference provides detailed information about the actions, data types, parameters, and errors of the WorkSpaces service. For more information about the supported Amazon Web Services Regions, endpoints, and service quotas of the Amazon WorkSpaces service, see WorkSpaces endpoints and quotasin the Amazon Web Services General Reference. You can also manage your WorkSpaces resources using the WorkSpaces console, Command Line Interface (CLI), and SDKs. For more information about administering WorkSpaces, see the Amazon WorkSpaces Administration Guide. For more information about using the Amazon WorkSpaces client application or web browser to access provisioned WorkSpaces, see the Amazon WorkSpaces User Guide. For more information about using the CLI to manage your WorkSpaces resources, see the WorkSpaces section of the CLI Reference.
Package securityhub provides the API client, operations, and parameter types for AWS SecurityHub. Security Hub provides you with a comprehensive view of your security state in Amazon Web Services and helps you assess your Amazon Web Services environment against security industry standards and best practices. Security Hub collects security data across Amazon Web Services accounts, Amazon Web Services services, and supported third-party products and helps you analyze your security trends and identify the highest priority security issues. To help you manage the security state of your organization, Security Hub supports multiple security standards. These include the Amazon Web Services Foundational Security Best Practices (FSBP) standard developed by Amazon Web Services, and external compliance frameworks such as the Center for Internet Security (CIS), the Payment Card Industry Data Security Standard (PCI DSS), and the National Institute of Standards and Technology (NIST). Each standard includes several security controls, each of which represents a security best practice. Security Hub runs checks against security controls and generates control findings to help you assess your compliance against security best practices. In addition to generating control findings, Security Hub also receives findings from other Amazon Web Services services, such as Amazon GuardDuty and Amazon Inspector, and supported third-party products. This gives you a single pane of glass into a variety of security-related issues. You can also send Security Hub findings to other Amazon Web Services services and supported third-party products. Security Hub offers automation features that help you triage and remediate security issues. For example, you can use automation rules to automatically update critical findings when a security check fails. You can also leverage the integration with Amazon EventBridge to trigger automatic responses to specific findings. This guide, the Security Hub API Reference, provides information about the Security Hub API. This includes supported resources, HTTP methods, parameters, and schemas. If you're new to Security Hub, you might find it helpful to also review the Security Hub User Guide. The user guide explains key concepts and provides procedures that demonstrate how to use Security Hub features. It also provides information about topics such as integrating Security Hub with other Amazon Web Services services. In addition to interacting with Security Hub by making calls to the Security Hub API, you can use a current version of an Amazon Web Services command line tool or SDK. Amazon Web Services provides tools and SDKs that consist of libraries and sample code for various languages and platforms, such as PowerShell, Java, Go, Python, C++, and .NET. These tools and SDKs provide convenient, programmatic access to Security Hub and other Amazon Web Services services . They also handle tasks such as signing requests, managing errors, and retrying requests automatically. For information about installing and using the Amazon Web Services tools and SDKs, see Tools to Build on Amazon Web Services. With the exception of operations that are related to central configuration, Security Hub API requests are executed only in the Amazon Web Services Region that is currently active or in the specific Amazon Web Services Region that you specify in your request. Any configuration or settings change that results from the operation is applied only to that Region. To make the same change in other Regions, call the same API operation in each Region in which you want to apply the change. When you use central configuration, API requests for enabling Security Hub, standards, and controls are executed in the home Region and all linked Regions. For a list of central configuration operations, see the Central configuration terms and conceptssection of the Security Hub User Guide. The following throttling limits apply to Security Hub API operations. BatchEnableStandards - RateLimit of 1 request per second. BurstLimit of 1 request per second. GetFindings - RateLimit of 3 requests per second. BurstLimit of 6 requests per second. BatchImportFindings - RateLimit of 10 requests per second. BurstLimit of 30 requests per second. BatchUpdateFindings - RateLimit of 10 requests per second. BurstLimit of 30 requests per second. UpdateStandardsControl - RateLimit of 1 request per second. BurstLimit of 5 requests per second. All other operations - RateLimit of 10 requests per second. BurstLimit of 30 requests per second.
Package cognitoidentityprovider provides the API client, operations, and parameter types for Amazon Cognito Identity Provider. With the Amazon Cognito user pools API, you can configure user pools and authenticate users. To authenticate users from third-party identity providers (IdPs) in this API, you can link IdP users to native user profiles. Learn more about the authentication and authorization of federated users at Adding user pool sign-in through a third partyand in the User pool federation endpoints and hosted UI reference. This API reference provides detailed information about API operations and object types in Amazon Cognito. Along with resource management operations, the Amazon Cognito user pools API includes classes of operations and authorization models for client-side and server-side authentication of users. You can interact with operations in the Amazon Cognito user pools API as any of the following subjects. An administrator who wants to configure user pools, app clients, users, groups, or other user pool functions. A server-side app, like a web application, that wants to use its Amazon Web Services privileges to manage, authenticate, or authorize a user. A client-side app, like a mobile app, that wants to make unauthenticated requests to manage, authenticate, or authorize a user. For more information, see Using the Amazon Cognito user pools API and user pool endpoints in the Amazon Cognito Developer Guide. With your Amazon Web Services SDK, you can build the logic to support operational flows in every use case for this API. You can also make direct REST API requests to Amazon Cognito user pools service endpoints. The following links can get you started with the CognitoIdentityProvider client in other supported Amazon Web Services SDKs. Amazon Web Services Command Line Interface Amazon Web Services SDK for .NET Amazon Web Services SDK for C++ Amazon Web Services SDK for Go Amazon Web Services SDK for Java V2 Amazon Web Services SDK for JavaScript Amazon Web Services SDK for PHP V3 Amazon Web Services SDK for Python Amazon Web Services SDK for Ruby V3 To get started with an Amazon Web Services SDK, see Tools to Build on Amazon Web Services. For example actions and scenarios, see Code examples for Amazon Cognito Identity Provider using Amazon Web Services SDKs.
Package accessanalyzer provides the API client, operations, and parameter types for Access Analyzer. Identity and Access Management Access Analyzer helps you to set, verify, and refine your IAM policies by providing a suite of capabilities. Its features include findings for external and unused access, basic and custom policy checks for validating policies, and policy generation to generate fine-grained policies. To start using IAM Access Analyzer to identify external or unused access, you first need to create an analyzer. External access analyzers help identify potential risks of accessing resources by enabling you to identify any resource policies that grant access to an external principal. It does this by using logic-based reasoning to analyze resource-based policies in your Amazon Web Services environment. An external principal can be another Amazon Web Services account, a root user, an IAM user or role, a federated user, an Amazon Web Services service, or an anonymous user. You can also use IAM Access Analyzer to preview public and cross-account access to your resources before deploying permissions changes. Unused access analyzers help identify potential identity access risks by enabling you to identify unused IAM roles, unused access keys, unused console passwords, and IAM principals with unused service and action-level permissions. Beyond findings, IAM Access Analyzer provides basic and custom policy checks to validate IAM policies before deploying permissions changes. You can use policy generation to refine permissions by attaching a policy generated using access activity logged in CloudTrail logs. This guide describes the IAM Access Analyzer operations that you can call programmatically. For general information about IAM Access Analyzer, see Identity and Access Management Access Analyzerin the IAM User Guide.
Package emr provides the API client, operations, and parameter types for Amazon EMR. Amazon EMR is a web service that makes it easier to process large amounts of data efficiently. Amazon EMR uses Hadoop processing combined with several Amazon Web Services services to do tasks such as web indexing, data mining, log file analysis, machine learning, scientific simulation, and data warehouse management.
Package kafka provides the API client, operations, and parameter types for Managed Streaming for Kafka. The operations for managing an Amazon MSK cluster.
Package acm provides the API client, operations, and parameter types for AWS Certificate Manager. You can use Certificate Manager (ACM) to manage SSL/TLS certificates for your Amazon Web Services-based websites and applications. For more information about using ACM, see the Certificate Manager User Guide.
Package docdb provides the API client, operations, and parameter types for Amazon DocumentDB with MongoDB compatibility. Amazon DocumentDB is a fast, reliable, and fully managed database service. Amazon DocumentDB makes it easy to set up, operate, and scale MongoDB-compatible databases in the cloud. With Amazon DocumentDB, you can run the same application code and use the same drivers and tools that you use with MongoDB.
Package organizations provides the API client, operations, and parameter types for AWS Organizations. Organizations is a web service that enables you to consolidate your multiple Amazon Web Services accounts into an organization and centrally manage your accounts and their resources. This guide provides descriptions of the Organizations operations. For more information about using this service, see the Organizations User Guide. We welcome your feedback. Send your comments to feedback-awsorganizations@amazon.com or post your feedback and questions in the Organizations support forum. For more information about the Amazon Web Services support forums, see Forums Help. For the current release of Organizations, specify the us-east-1 region for all Amazon Web Services API and CLI calls made from the commercial Amazon Web Services Regions outside of China. If calling from one of the Amazon Web Services Regions in China, then specify cn-northwest-1 . You can do this in the CLI by using these parameters and commands: --endpoint-url https://organizations.us-east-1.amazonaws.com (from commercial or --endpoint-url https://organizations.cn-northwest-1.amazonaws.com.cn (from aws configure set default.region us-east-1 (from commercial Amazon Web Services or aws configure set default.region cn-northwest-1 (from Amazon Web Services --region us-east-1 (from commercial Amazon Web Services Regions outside of or --region cn-northwest-1 (from Amazon Web Services Regions in China) Organizations supports CloudTrail, a service that records Amazon Web Services API calls for your Amazon Web Services account and delivers log files to an Amazon S3 bucket. By using information collected by CloudTrail, you can determine which requests the Organizations service received, who made the request and when, and so on. For more about Organizations and its support for CloudTrail, see Logging Organizations API calls with CloudTrailin the Organizations User Guide. To learn more about CloudTrail, including how to turn it on and find your log files, see the CloudTrail User Guide.
Package ses provides the API client, operations, and parameter types for Amazon Simple Email Service. This document contains reference information for the Amazon Simple Email Service (Amazon SES) API, version 2010-12-01. This document is best used in conjunction with the Amazon SES Developer Guide. For a list of Amazon SES endpoints to use in service requests, see Regions and Amazon SES in the Amazon SES Developer Guide. This documentation contains reference information related to the following: Amazon SES API Actions Amazon SES API Data Types Common Parameters Common Errors
Package route53domains provides the API client, operations, and parameter types for Amazon Route 53 Domains. Amazon Route 53 API actions let you register domain names and perform related operations.
Package apigatewayv2 provides the API client, operations, and parameter types for AmazonApiGatewayV2. Amazon API Gateway V2
Package neptune provides the API client, operations, and parameter types for Amazon Neptune. Amazon Neptune is a fast, reliable, fully-managed graph database service that makes it easy to build and run applications that work with highly connected datasets. The core of Amazon Neptune is a purpose-built, high-performance graph database engine optimized for storing billions of relationships and querying the graph with milliseconds latency. Amazon Neptune supports popular graph models Property Graph and W3C's RDF, and their respective query languages Apache TinkerPop Gremlin and SPARQL, allowing you to easily build queries that efficiently navigate highly connected datasets. Neptune powers graph use cases such as recommendation engines, fraud detection, knowledge graphs, drug discovery, and network security. This interface reference for Amazon Neptune contains documentation for a programming or command line interface you can use to manage Amazon Neptune. Note that Amazon Neptune is asynchronous, which means that some interfaces might require techniques such as polling or callback functions to determine when a command has been applied. In this reference, the parameter descriptions indicate whether a command is applied immediately, on the next instance reboot, or during the maintenance window. The reference structure is as follows, and we list following some related topics from the user guide.