Package sdk is the official AWS SDK for the Go programming language. The AWS SDK for Go provides APIs and utilities that developers can use to build Go applications that use AWS services, such as Amazon Elastic Compute Cloud (Amazon EC2) and Amazon Simple Storage Service (Amazon S3). The SDK removes the complexity of coding directly against a web service interface. It hides a lot of the lower-level plumbing, such as authentication, request retries, and error handling. The SDK also includes helpful utilities on top of the AWS APIs that add additional capabilities and functionality. For example, the Amazon S3 Download and Upload Manager will automatically split up large objects into multiple parts and transfer them concurrently. See the s3manager package documentation for more information. https://docs.aws.amazon.com/sdk-for-go/api/service/s3/s3manager/ Checkout the Getting Started Guide and API Reference Docs detailed the SDK's components and details on each AWS client the SDK supports. The Getting Started Guide provides examples and detailed description of how to get setup with the SDK. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/welcome.html The API Reference Docs include a detailed breakdown of the SDK's components such as utilities and AWS clients. Use this as a reference of the Go types included with the SDK, such as AWS clients, API operations, and API parameters. https://docs.aws.amazon.com/sdk-for-go/api/ The SDK is composed of two main components, SDK core, and service clients. The SDK core packages are all available under the aws package at the root of the SDK. Each client for a supported AWS service is available within its own package under the service folder at the root of the SDK. aws - SDK core, provides common shared types such as Config, Logger, and utilities to make working with API parameters easier. awserr - Provides the error interface that the SDK will use for all errors that occur in the SDK's processing. This includes service API response errors as well. The Error type is made up of a code and message. Cast the SDK's returned error type to awserr.Error and call the Code method to compare returned error to specific error codes. See the package's documentation for additional values that can be extracted such as RequestId. credentials - Provides the types and built in credentials providers the SDK will use to retrieve AWS credentials to make API requests with. Nested under this folder are also additional credentials providers such as stscreds for assuming IAM roles, and ec2rolecreds for EC2 Instance roles. endpoints - Provides the AWS Regions and Endpoints metadata for the SDK. Use this to lookup AWS service endpoint information such as which services are in a region, and what regions a service is in. Constants are also provided for all region identifiers, e.g UsWest2RegionID for "us-west-2". session - Provides initial default configuration, and load configuration from external sources such as environment and shared credentials file. request - Provides the API request sending, and retry logic for the SDK. This package also includes utilities for defining your own request retryer, and configuring how the SDK processes the request. service - Clients for AWS services. All services supported by the SDK are available under this folder. The SDK includes the Go types and utilities you can use to make requests to AWS service APIs. Within the service folder at the root of the SDK you'll find a package for each AWS service the SDK supports. All service clients follows a common pattern of creation and usage. When creating a client for an AWS service you'll first need to have a Session value constructed. The Session provides shared configuration that can be shared between your service clients. When service clients are created you can pass in additional configuration via the aws.Config type to override configuration provided by in the Session to create service client instances with custom configuration. Once the service's client is created you can use it to make API requests the AWS service. These clients are safe to use concurrently. In the AWS SDK for Go, you can configure settings for service clients, such as the log level and maximum number of retries. Most settings are optional; however, for each service client, you must specify a region and your credentials. The SDK uses these values to send requests to the correct AWS region and sign requests with the correct credentials. You can specify these values as part of a session or as environment variables. See the SDK's configuration guide for more information. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html See the session package documentation for more information on how to use Session with the SDK. https://docs.aws.amazon.com/sdk-for-go/api/aws/session/ See the Config type in the aws package for more information on configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config When using the SDK you'll generally need your AWS credentials to authenticate with AWS services. The SDK supports multiple methods of supporting these credentials. By default the SDK will source credentials automatically from its default credential chain. See the session package for more information on this chain, and how to configure it. The common items in the credential chain are the following: Environment Credentials - Set of environment variables that are useful when sub processes are created for specific roles. Shared Credentials file (~/.aws/credentials) - This file stores your credentials based on a profile name and is useful for local development. EC2 Instance Role Credentials - Use EC2 Instance Role to assign credentials to application running on an EC2 instance. This removes the need to manage credential files in production. Credentials can be configured in code as well by setting the Config's Credentials value to a custom provider or using one of the providers included with the SDK to bypass the default credential chain and use a custom one. This is helpful when you want to instruct the SDK to only use a specific set of credentials or providers. This example creates a credential provider for assuming an IAM role, "myRoleARN" and configures the S3 service client to use that role for API requests. See the credentials package documentation for more information on credential providers included with the SDK, and how to customize the SDK's usage of credentials. https://docs.aws.amazon.com/sdk-for-go/api/aws/credentials The SDK has support for the shared configuration file (~/.aws/config). This support can be enabled by setting the environment variable, "AWS_SDK_LOAD_CONFIG=1", or enabling the feature in code when creating a Session via the Option's SharedConfigState parameter. In addition to the credentials you'll need to specify the region the SDK will use to make AWS API requests to. In the SDK you can specify the region either with an environment variable, or directly in code when a Session or service client is created. The last value specified in code wins if the region is specified multiple ways. To set the region via the environment variable set the "AWS_REGION" to the region you want to the SDK to use. Using this method to set the region will allow you to run your application in multiple regions without needing additional code in the application to select the region. The endpoints package includes constants for all regions the SDK knows. The values are all suffixed with RegionID. These values are helpful, because they reduce the need to type the region string manually. To set the region on a Session use the aws package's Config struct parameter Region to the AWS region you want the service clients created from the session to use. This is helpful when you want to create multiple service clients, and all of the clients make API requests to the same region. See the endpoints package for the AWS Regions and Endpoints metadata. https://docs.aws.amazon.com/sdk-for-go/api/aws/endpoints/ In addition to setting the region when creating a Session you can also set the region on a per service client bases. This overrides the region of a Session. This is helpful when you want to create service clients in specific regions different from the Session's region. See the Config type in the aws package for more information and additional options such as setting the Endpoint, and other service client configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config Once the client is created you can make an API request to the service. Each API method takes a input parameter, and returns the service response and an error. The SDK provides methods for making the API call in multiple ways. In this list we'll use the S3 ListObjects API as an example for the different ways of making API requests. ListObjects - Base API operation that will make the API request to the service. ListObjectsRequest - API methods suffixed with Request will construct the API request, but not send it. This is also helpful when you want to get a presigned URL for a request, and share the presigned URL instead of your application making the request directly. ListObjectsPages - Same as the base API operation, but uses a callback to automatically handle pagination of the API's response. ListObjectsWithContext - Same as base API operation, but adds support for the Context pattern. This is helpful for controlling the canceling of in flight requests. See the Go standard library context package for more information. This method also takes request package's Option functional options as the variadic argument for modifying how the request will be made, or extracting information from the raw HTTP response. ListObjectsPagesWithContext - same as ListObjectsPages, but adds support for the Context pattern. Similar to ListObjectsWithContext this method also takes the request package's Option function option types as the variadic argument. In addition to the API operations the SDK also includes several higher level methods that abstract checking for and waiting for an AWS resource to be in a desired state. In this list we'll use WaitUntilBucketExists to demonstrate the different forms of waiters. WaitUntilBucketExists. - Method to make API request to query an AWS service for a resource's state. Will return successfully when that state is accomplished. WaitUntilBucketExistsWithContext - Same as WaitUntilBucketExists, but adds support for the Context pattern. In addition these methods take request package's WaiterOptions to configure the waiter, and how underlying request will be made by the SDK. The API method will document which error codes the service might return for the operation. These errors will also be available as const strings prefixed with "ErrCode" in the service client's package. If there are no errors listed in the API's SDK documentation you'll need to consult the AWS service's API documentation for the errors that could be returned. Pagination helper methods are suffixed with "Pages", and provide the functionality needed to round trip API page requests. Pagination methods take a callback function that will be called for each page of the API's response. Waiter helper methods provide the functionality to wait for an AWS resource state. These methods abstract the logic needed to to check the state of an AWS resource, and wait until that resource is in a desired state. The waiter will block until the resource is in the state that is desired, an error occurs, or the waiter times out. If a resource times out the error code returned will be request.WaiterResourceNotReadyErrorCode. This example shows a complete working Go file which will upload a file to S3 and use the Context pattern to implement timeout logic that will cancel the request if it takes too long. This example highlights how to use sessions, create a service client, make a request, handle the error, and process the response.
Package rpcclient implements a websocket-enabled Decred JSON-RPC client. This client provides a robust and easy to use client for interfacing with a Decred RPC server that uses a mostly btcd/bitcoin core style Decred JSON-RPC API. This client has been tested with dcrd (https://github.com/decred/dcrd) and dcrwallet (https://github.com/decred/dcrwallet). In addition to the compatible standard HTTP POST JSON-RPC API, dcrd and dcrwallet provide a websocket interface that is more efficient than the standard HTTP POST method of accessing RPC. The section below discusses the differences between HTTP POST and websockets. By default, this client assumes the RPC server supports websockets and has TLS enabled. In practice, this currently means it assumes you are talking to dcrd or dcrwallet by default. However, configuration options are provided to fall back to HTTP POST and disable TLS to support talking with inferior bitcoin core style RPC servers. In HTTP POST-based JSON-RPC, every request creates a new HTTP connection, issues the call, waits for the response, and closes the connection. This adds quite a bit of overhead to every call and lacks flexibility for features such as notifications. In contrast, the websocket-based JSON-RPC interface provided by dcrd and dcrwallet only uses a single connection that remains open and allows asynchronous bi-directional communication. The websocket interface supports all of the same commands as HTTP POST, but they can be invoked without having to go through a connect/disconnect cycle for every call. In addition, the websocket interface provides other nice features such as the ability to register for asynchronous notifications of various events. The client provides both a synchronous (blocking) and asynchronous API. The synchronous (blocking) API is typically sufficient for most use cases. It works by issuing the RPC and blocking until the response is received. This allows straightforward code where you have the response as soon as the function returns. The asynchronous API works on the concept of futures. When you invoke the async version of a command, it will quickly return an instance of a type that promises to provide the result of the RPC at some future time. In the background, the RPC call is issued and the result is stored in the returned instance. Invoking the Receive method on the returned instance will either return the result immediately if it has already arrived, or block until it has. This is useful since it provides the caller with greater control over concurrency. The first important part of notifications is to realize that they will only work when connected via websockets. This should intuitively make sense because HTTP POST mode does not keep a connection open! All notifications provided by dcrd require registration to opt-in. For example, if you want to be notified when funds are received by a set of addresses, you register the addresses via the NotifyReceived (or NotifyReceivedAsync) function. Notifications are exposed by the client through the use of callback handlers which are setup via a NotificationHandlers instance that is specified by the caller when creating the client. It is important that these notification handlers complete quickly since they are intentionally in the main read loop and will block further reads until they complete. This provides the caller with the flexibility to decide what to do when notifications are coming in faster than they are being handled. In particular this means issuing a blocking RPC call from a callback handler will cause a deadlock as more server responses won't be read until the callback returns, but the callback would be waiting for a response. Thus, any additional RPCs must be issued an a completely decoupled manner. By default, when running in websockets mode, this client will automatically keep trying to reconnect to the RPC server should the connection be lost. There is a back-off in between each connection attempt until it reaches one try per minute. Once a connection is re-established, all previously registered notifications are automatically re-registered and any in-flight commands are re-issued. This means from the caller's perspective, the request simply takes longer to complete. The caller may invoke the Shutdown method on the client to force the client to cease reconnect attempts and return ErrClientShutdown for all outstanding commands. The automatic reconnection can be disabled by setting the DisableAutoReconnect flag to true in the connection config when creating the client. Minor RPC Server Differences and Chain/Wallet Separation Some of the commands are extensions specific to a particular RPC server. For example, the DebugLevel call is an extension only provided by dcrd (and dcrwallet passthrough). Therefore if you call one of these commands against an RPC server that doesn't provide them, you will get an unimplemented error from the server. An effort has been made to call out which commmands are extensions in their documentation. Also, it is important to realize that dcrd intentionally separates the wallet functionality into a separate process named dcrwallet. This means if you are connected to the dcrd RPC server directly, only the RPCs which are related to chain services will be available. Depending on your application, you might only need chain-related RPCs. In contrast, dcrwallet provides pass through treatment for chain-related RPCs, so it supports them in addition to wallet-related RPCs. There are 3 categories of errors that will be returned throughout this package: The first category of errors are typically one of ErrInvalidAuth, ErrInvalidEndpoint, ErrClientDisconnect, or ErrClientShutdown. NOTE: The ErrClientDisconnect will not be returned unless the DisableAutoReconnect flag is set since the client automatically handles reconnect by default as previously described. The second category of errors typically indicates a programmer error and as such the type can vary, but usually will be best handled by simply showing/logging it. The third category of errors, that is errors returned by the server, can be detected by type asserting the error in a *dcrjson.RPCError. For example, to detect if a command is unimplemented by the remote RPC server: The following full-blown client examples are in the examples directory:
Package rpcclient implements a websocket-enabled Decred JSON-RPC client. This client provides a robust and easy to use client for interfacing with a Decred RPC server that uses a mostly btcd/bitcoin core style Decred JSON-RPC API. This client has been tested with dcrd (https://github.com/decred/dcrd) and dcrwallet (https://github.com/decred/dcrwallet). In addition to the compatible standard HTTP POST JSON-RPC API, dcrd and dcrwallet provide a websocket interface that is more efficient than the standard HTTP POST method of accessing RPC. The section below discusses the differences between HTTP POST and websockets. By default, this client assumes the RPC server supports websockets and has TLS enabled. In practice, this currently means it assumes you are talking to dcrd or dcrwallet by default. However, configuration options are provided to fall back to HTTP POST and disable TLS to support talking with inferior bitcoin core style RPC servers. In HTTP POST-based JSON-RPC, every request creates a new HTTP connection, issues the call, waits for the response, and closes the connection. This adds quite a bit of overhead to every call and lacks flexibility for features such as notifications. In contrast, the websocket-based JSON-RPC interface provided by dcrd and dcrwallet only uses a single connection that remains open and allows asynchronous bi-directional communication. The websocket interface supports all of the same commands as HTTP POST, but they can be invoked without having to go through a connect/disconnect cycle for every call. In addition, the websocket interface provides other nice features such as the ability to register for asynchronous notifications of various events. The client provides both a synchronous (blocking) and asynchronous API. The synchronous (blocking) API is typically sufficient for most use cases. It works by issuing the RPC and blocking until the response is received. This allows straightforward code where you have the response as soon as the function returns. The asynchronous API works on the concept of futures. When you invoke the async version of a command, it will quickly return an instance of a type that promises to provide the result of the RPC at some future time. In the background, the RPC call is issued and the result is stored in the returned instance. Invoking the Receive method on the returned instance will either return the result immediately if it has already arrived, or block until it has. This is useful since it provides the caller with greater control over concurrency. The first important part of notifications is to realize that they will only work when connected via websockets. This should intuitively make sense because HTTP POST mode does not keep a connection open! All notifications provided by dcrd require registration to opt-in. For example, if you want to be notified when funds are received by a set of addresses, you register the addresses via the NotifyReceived (or NotifyReceivedAsync) function. Notifications are exposed by the client through the use of callback handlers which are setup via a NotificationHandlers instance that is specified by the caller when creating the client. It is important that these notification handlers complete quickly since they are intentionally in the main read loop and will block further reads until they complete. This provides the caller with the flexibility to decide what to do when notifications are coming in faster than they are being handled. In particular this means issuing a blocking RPC call from a callback handler will cause a deadlock as more server responses won't be read until the callback returns, but the callback would be waiting for a response. Thus, any additional RPCs must be issued an a completely decoupled manner. By default, when running in websockets mode, this client will automatically keep trying to reconnect to the RPC server should the connection be lost. There is a back-off in between each connection attempt until it reaches one try per minute. Once a connection is re-established, all previously registered notifications are automatically re-registered and any in-flight commands are re-issued. This means from the caller's perspective, the request simply takes longer to complete. The caller may invoke the Shutdown method on the client to force the client to cease reconnect attempts and return ErrClientShutdown for all outstanding commands. The automatic reconnection can be disabled by setting the DisableAutoReconnect flag to true in the connection config when creating the client. Minor RPC Server Differences and Chain/Wallet Separation Some of the commands are extensions specific to a particular RPC server. For example, the DebugLevel call is an extension only provided by dcrd (and dcrwallet passthrough). Therefore if you call one of these commands against an RPC server that doesn't provide them, you will get an unimplemented error from the server. An effort has been made to call out which commmands are extensions in their documentation. Also, it is important to realize that dcrd intentionally separates the wallet functionality into a separate process named dcrwallet. This means if you are connected to the dcrd RPC server directly, only the RPCs which are related to chain services will be available. Depending on your application, you might only need chain-related RPCs. In contrast, dcrwallet provides pass through treatment for chain-related RPCs, so it supports them in addition to wallet-related RPCs. There are 3 categories of errors that will be returned throughout this package: The first category of errors are typically one of ErrInvalidAuth, ErrInvalidEndpoint, ErrClientDisconnect, or ErrClientShutdown. NOTE: The ErrClientDisconnect will not be returned unless the DisableAutoReconnect flag is set since the client automatically handles reconnect by default as previously described. The second category of errors typically indicates a programmer error and as such the type can vary, but usually will be best handled by simply showing/logging it. The third category of errors, that is errors returned by the server, can be detected by type asserting the error in a *dcrjson.RPCError. For example, to detect if a command is unimplemented by the remote RPC server: The following full-blown client examples are in the examples directory:
Package rpcclient implements a websocket-enabled Decred JSON-RPC client. This client provides a robust and easy to use client for interfacing with a Decred RPC server that uses a mostly btcd/bitcoin core style Decred JSON-RPC API. This client has been tested with dcrd (https://github.com/decred/dcrd) and dcrwallet (https://github.com/decred/dcrwallet). In addition to the compatible standard HTTP POST JSON-RPC API, dcrd and dcrwallet provide a websocket interface that is more efficient than the standard HTTP POST method of accessing RPC. The section below discusses the differences between HTTP POST and websockets. By default, this client assumes the RPC server supports websockets and has TLS enabled. In practice, this currently means it assumes you are talking to dcrd or dcrwallet by default. However, configuration options are provided to fall back to HTTP POST and disable TLS to support talking with inferior bitcoin core style RPC servers. In HTTP POST-based JSON-RPC, every request creates a new HTTP connection, issues the call, waits for the response, and closes the connection. This adds quite a bit of overhead to every call and lacks flexibility for features such as notifications. In contrast, the websocket-based JSON-RPC interface provided by dcrd and dcrwallet only uses a single connection that remains open and allows asynchronous bi-directional communication. The websocket interface supports all of the same commands as HTTP POST, but they can be invoked without having to go through a connect/disconnect cycle for every call. In addition, the websocket interface provides other nice features such as the ability to register for asynchronous notifications of various events. The client provides both a synchronous (blocking) and asynchronous API. The synchronous (blocking) API is typically sufficient for most use cases. It works by issuing the RPC and blocking until the response is received. This allows straightforward code where you have the response as soon as the function returns. The asynchronous API works on the concept of futures. When you invoke the async version of a command, it will quickly return an instance of a type that promises to provide the result of the RPC at some future time. In the background, the RPC call is issued and the result is stored in the returned instance. Invoking the Receive method on the returned instance will either return the result immediately if it has already arrived, or block until it has. This is useful since it provides the caller with greater control over concurrency. The first important part of notifications is to realize that they will only work when connected via websockets. This should intuitively make sense because HTTP POST mode does not keep a connection open! All notifications provided by dcrd require registration to opt-in. For example, if you want to be notified when funds are received by a set of addresses, you register the addresses via the NotifyReceived (or NotifyReceivedAsync) function. Notifications are exposed by the client through the use of callback handlers which are setup via a NotificationHandlers instance that is specified by the caller when creating the client. It is important that these notification handlers complete quickly since they are intentionally in the main read loop and will block further reads until they complete. This provides the caller with the flexibility to decide what to do when notifications are coming in faster than they are being handled. In particular this means issuing a blocking RPC call from a callback handler will cause a deadlock as more server responses won't be read until the callback returns, but the callback would be waiting for a response. Thus, any additional RPCs must be issued an a completely decoupled manner. By default, when running in websockets mode, this client will automatically keep trying to reconnect to the RPC server should the connection be lost. There is a back-off in between each connection attempt until it reaches one try per minute. Once a connection is re-established, all previously registered notifications are automatically re-registered and any in-flight commands are re-issued. This means from the caller's perspective, the request simply takes longer to complete. The caller may invoke the Shutdown method on the client to force the client to cease reconnect attempts and return ErrClientShutdown for all outstanding commands. The automatic reconnection can be disabled by setting the DisableAutoReconnect flag to true in the connection config when creating the client. Minor RPC Server Differences and Chain/Wallet Separation Some of the commands are extensions specific to a particular RPC server. For example, the DebugLevel call is an extension only provided by dcrd (and dcrwallet passthrough). Therefore if you call one of these commands against an RPC server that doesn't provide them, you will get an unimplemented error from the server. An effort has been made to call out which commands are extensions in their documentation. Also, it is important to realize that dcrd intentionally separates the wallet functionality into a separate process named dcrwallet. This means if you are connected to the dcrd RPC server directly, only the RPCs which are related to chain services will be available. Depending on your application, you might only need chain-related RPCs. In contrast, dcrwallet provides pass through treatment for chain-related RPCs, so it supports them in addition to wallet-related RPCs. There are 3 categories of errors that will be returned throughout this package: The first category of errors are typically one of ErrInvalidAuth, ErrInvalidEndpoint, ErrClientDisconnect, or ErrClientShutdown. NOTE: The ErrClientDisconnect will not be returned unless the DisableAutoReconnect flag is set since the client automatically handles reconnect by default as previously described. The second category of errors typically indicates a programmer error and as such the type can vary, but usually will be best handled by simply showing/logging it. The third category of errors, that is errors returned by the server, can be detected by type asserting the error in a *dcrjson.RPCError. For example, to detect if a command is unimplemented by the remote RPC server: The following full-blown client examples are in the examples directory:
Package rpcclient implements a websocket-enabled Decred JSON-RPC client. This client provides a robust and easy to use client for interfacing with a Decred RPC server that uses a mostly btcd/bitcoin core style Decred JSON-RPC API. This client has been tested with dcrd (https://github.com/decred/dcrd) and dcrwallet (https://github.com/decred/dcrwallet). In addition to the compatible standard HTTP POST JSON-RPC API, dcrd and dcrwallet provide a websocket interface that is more efficient than the standard HTTP POST method of accessing RPC. The section below discusses the differences between HTTP POST and websockets. By default, this client assumes the RPC server supports websockets and has TLS enabled. In practice, this currently means it assumes you are talking to dcrd or dcrwallet by default. However, configuration options are provided to fall back to HTTP POST and disable TLS to support talking with inferior bitcoin core style RPC servers. In HTTP POST-based JSON-RPC, every request creates a new HTTP connection, issues the call, waits for the response, and closes the connection. This adds quite a bit of overhead to every call and lacks flexibility for features such as notifications. In contrast, the websocket-based JSON-RPC interface provided by dcrd and dcrwallet only uses a single connection that remains open and allows asynchronous bi-directional communication. The websocket interface supports all of the same commands as HTTP POST, but they can be invoked without having to go through a connect/disconnect cycle for every call. In addition, the websocket interface provides other nice features such as the ability to register for asynchronous notifications of various events. The client provides both a synchronous (blocking) and asynchronous API. The synchronous (blocking) API is typically sufficient for most use cases. It works by issuing the RPC and blocking until the response is received. This allows straightforward code where you have the response as soon as the function returns. The asynchronous API works on the concept of futures. When you invoke the async version of a command, it will quickly return an instance of a type that promises to provide the result of the RPC at some future time. In the background, the RPC call is issued and the result is stored in the returned instance. Invoking the Receive method on the returned instance will either return the result immediately if it has already arrived, or block until it has. This is useful since it provides the caller with greater control over concurrency. The first important part of notifications is to realize that they will only work when connected via websockets. This should intuitively make sense because HTTP POST mode does not keep a connection open! All notifications provided by dcrd require registration to opt-in. For example, if you want to be notified when funds are received by a set of addresses, you register the addresses via the NotifyReceived (or NotifyReceivedAsync) function. Notifications are exposed by the client through the use of callback handlers which are setup via a NotificationHandlers instance that is specified by the caller when creating the client. It is important that these notification handlers complete quickly since they are intentionally in the main read loop and will block further reads until they complete. This provides the caller with the flexibility to decide what to do when notifications are coming in faster than they are being handled. In particular this means issuing a blocking RPC call from a callback handler will cause a deadlock as more server responses won't be read until the callback returns, but the callback would be waiting for a response. Thus, any additional RPCs must be issued an a completely decoupled manner. By default, when running in websockets mode, this client will automatically keep trying to reconnect to the RPC server should the connection be lost. There is a back-off in between each connection attempt until it reaches one try per minute. Once a connection is re-established, all previously registered notifications are automatically re-registered and any in-flight commands are re-issued. This means from the caller's perspective, the request simply takes longer to complete. The caller may invoke the Shutdown method on the client to force the client to cease reconnect attempts and return ErrClientShutdown for all outstanding commands. The automatic reconnection can be disabled by setting the DisableAutoReconnect flag to true in the connection config when creating the client. Minor RPC Server Differences and Chain/Wallet Separation Some of the commands are extensions specific to a particular RPC server. For example, the DebugLevel call is an extension only provided by dcrd (and dcrwallet passthrough). Therefore if you call one of these commands against an RPC server that doesn't provide them, you will get an unimplemented error from the server. An effort has been made to call out which commmands are extensions in their documentation. Also, it is important to realize that dcrd intentionally separates the wallet functionality into a separate process named dcrwallet. This means if you are connected to the dcrd RPC server directly, only the RPCs which are related to chain services will be available. Depending on your application, you might only need chain-related RPCs. In contrast, dcrwallet provides pass through treatment for chain-related RPCs, so it supports them in addition to wallet-related RPCs. There are 3 categories of errors that will be returned throughout this package: The first category of errors are typically one of ErrInvalidAuth, ErrInvalidEndpoint, ErrClientDisconnect, or ErrClientShutdown. NOTE: The ErrClientDisconnect will not be returned unless the DisableAutoReconnect flag is set since the client automatically handles reconnect by default as previously described. The second category of errors typically indicates a programmer error and as such the type can vary, but usually will be best handled by simply showing/logging it. The third category of errors, that is errors returned by the server, can be detected by type asserting the error in a *dcrjson.RPCError. For example, to detect if a command is unimplemented by the remote RPC server: The following full-blown client examples are in the examples directory:
Package rpcclient implements a websocket-enabled Decred JSON-RPC client. This client provides a robust and easy to use client for interfacing with a Decred RPC server that uses a mostly btcd/bitcoin core style Decred JSON-RPC API. This client has been tested with dcrd (https://github.com/decred/dcrd) and dcrwallet (https://github.com/decred/dcrwallet). In addition to the compatible standard HTTP POST JSON-RPC API, dcrd and dcrwallet provide a websocket interface that is more efficient than the standard HTTP POST method of accessing RPC. The section below discusses the differences between HTTP POST and websockets. By default, this client assumes the RPC server supports websockets and has TLS enabled. In practice, this currently means it assumes you are talking to dcrd or dcrwallet by default. However, configuration options are provided to fall back to HTTP POST and disable TLS to support talking with inferior bitcoin core style RPC servers. In HTTP POST-based JSON-RPC, every request creates a new HTTP connection, issues the call, waits for the response, and closes the connection. This adds quite a bit of overhead to every call and lacks flexibility for features such as notifications. In contrast, the websocket-based JSON-RPC interface provided by dcrd and dcrwallet only uses a single connection that remains open and allows asynchronous bi-directional communication. The websocket interface supports all of the same commands as HTTP POST, but they can be invoked without having to go through a connect/disconnect cycle for every call. In addition, the websocket interface provides other nice features such as the ability to register for asynchronous notifications of various events. The client provides both a synchronous (blocking) and asynchronous API. The synchronous (blocking) API is typically sufficient for most use cases. It works by issuing the RPC and blocking until the response is received. This allows straightforward code where you have the response as soon as the function returns. The asynchronous API works on the concept of futures. When you invoke the async version of a command, it will quickly return an instance of a type that promises to provide the result of the RPC at some future time. In the background, the RPC call is issued and the result is stored in the returned instance. Invoking the Receive method on the returned instance will either return the result immediately if it has already arrived, or block until it has. This is useful since it provides the caller with greater control over concurrency. The first important part of notifications is to realize that they will only work when connected via websockets. This should intuitively make sense because HTTP POST mode does not keep a connection open! All notifications provided by dcrd require registration to opt-in. For example, if you want to be notified when funds are received by a set of addresses, you register the addresses via the NotifyReceived (or NotifyReceivedAsync) function. Notifications are exposed by the client through the use of callback handlers which are setup via a NotificationHandlers instance that is specified by the caller when creating the client. It is important that these notification handlers complete quickly since they are intentionally in the main read loop and will block further reads until they complete. This provides the caller with the flexibility to decide what to do when notifications are coming in faster than they are being handled. In particular this means issuing a blocking RPC call from a callback handler will cause a deadlock as more server responses won't be read until the callback returns, but the callback would be waiting for a response. Thus, any additional RPCs must be issued an a completely decoupled manner. By default, when running in websockets mode, this client will automatically keep trying to reconnect to the RPC server should the connection be lost. There is a back-off in between each connection attempt until it reaches one try per minute. Once a connection is re-established, all previously registered notifications are automatically re-registered and any in-flight commands are re-issued. This means from the caller's perspective, the request simply takes longer to complete. The caller may invoke the Shutdown method on the client to force the client to cease reconnect attempts and return ErrClientShutdown for all outstanding commands. The automatic reconnection can be disabled by setting the DisableAutoReconnect flag to true in the connection config when creating the client. This package only provides methods for dcrd RPCs. Using the websocket connection and request-response mapping provided by rpcclient with arbitrary methods or different servers is possible through the generic RawRequest and RawRequestAsync methods (each of which deal with json.RawMessage for parameters and return results). Previous versions of this package provided methods for dcrwallet's JSON-RPC server in addition to dcrd. These were removed in major version 6 of this module. Projects depending on these calls are advised to use the decred.org/dcrwallet/rpc/client/dcrwallet package which is able to wrap rpcclient.Client using the aforementioned RawRequest method: Using struct embedding, it is possible to create a single variable with the combined method sets of both rpcclient.Client and dcrwallet.Client: This technique is valuable as dcrwallet (syncing in RPC mode) will passthrough any unknown RPCs to the backing dcrd server, proxying requests and responses for the client. There are 3 categories of errors that will be returned throughout this package: The first category of errors are typically one of ErrInvalidAuth, ErrInvalidEndpoint, ErrClientDisconnect, or ErrClientShutdown. NOTE: The ErrClientDisconnect will not be returned unless the DisableAutoReconnect flag is set since the client automatically handles reconnect by default as previously described. The second category of errors typically indicates a programmer error and as such the type can vary, but usually will be best handled by simply showing/logging it. The third category of errors, that is errors returned by the server, can be detected by type asserting the error in a *dcrjson.RPCError. For example, to detect if a command is unimplemented by the remote RPC server: The following full-blown client examples are in the examples directory:
Package rpcclient implements a websocket-enabled Decred JSON-RPC client. This client provides a robust and easy to use client for interfacing with a Decred RPC server that uses a mostly btcd/bitcoin core style Decred JSON-RPC API. This client has been tested with dcrd (https://github.com/decred/dcrd) and dcrwallet (https://github.com/decred/dcrwallet). In addition to the compatible standard HTTP POST JSON-RPC API, dcrd and dcrwallet provide a websocket interface that is more efficient than the standard HTTP POST method of accessing RPC. The section below discusses the differences between HTTP POST and websockets. By default, this client assumes the RPC server supports websockets and has TLS enabled. In practice, this currently means it assumes you are talking to dcrd or dcrwallet by default. However, configuration options are provided to fall back to HTTP POST and disable TLS to support talking with inferior bitcoin core style RPC servers. In HTTP POST-based JSON-RPC, every request creates a new HTTP connection, issues the call, waits for the response, and closes the connection. This adds quite a bit of overhead to every call and lacks flexibility for features such as notifications. In contrast, the websocket-based JSON-RPC interface provided by dcrd and dcrwallet only uses a single connection that remains open and allows asynchronous bi-directional communication. The websocket interface supports all of the same commands as HTTP POST, but they can be invoked without having to go through a connect/disconnect cycle for every call. In addition, the websocket interface provides other nice features such as the ability to register for asynchronous notifications of various events. The client provides both a synchronous (blocking) and asynchronous API. The synchronous (blocking) API is typically sufficient for most use cases. It works by issuing the RPC and blocking until the response is received. This allows straightforward code where you have the response as soon as the function returns. The asynchronous API works on the concept of futures. When you invoke the async version of a command, it will quickly return an instance of a type that promises to provide the result of the RPC at some future time. In the background, the RPC call is issued and the result is stored in the returned instance. Invoking the Receive method on the returned instance will either return the result immediately if it has already arrived, or block until it has. This is useful since it provides the caller with greater control over concurrency. The first important part of notifications is to realize that they will only work when connected via websockets. This should intuitively make sense because HTTP POST mode does not keep a connection open! All notifications provided by dcrd require registration to opt-in. For example, if you want to be notified when funds are received by a set of addresses, you register the addresses via the NotifyReceived (or NotifyReceivedAsync) function. Notifications are exposed by the client through the use of callback handlers which are setup via a NotificationHandlers instance that is specified by the caller when creating the client. It is important that these notification handlers complete quickly since they are intentionally in the main read loop and will block further reads until they complete. This provides the caller with the flexibility to decide what to do when notifications are coming in faster than they are being handled. In particular this means issuing a blocking RPC call from a callback handler will cause a deadlock as more server responses won't be read until the callback returns, but the callback would be waiting for a response. Thus, any additional RPCs must be issued an a completely decoupled manner. By default, when running in websockets mode, this client will automatically keep trying to reconnect to the RPC server should the connection be lost. There is a back-off in between each connection attempt until it reaches one try per minute. Once a connection is re-established, all previously registered notifications are automatically re-registered and any in-flight commands are re-issued. This means from the caller's perspective, the request simply takes longer to complete. The caller may invoke the Shutdown method on the client to force the client to cease reconnect attempts and return ErrClientShutdown for all outstanding commands. The automatic reconnection can be disabled by setting the DisableAutoReconnect flag to true in the connection config when creating the client. This package only provides methods for dcrd RPCs. Using the websocket connection and request-response mapping provided by rpcclient with arbitrary methods or different servers is possible through the generic RawRequest and RawRequestAsync methods (each of which deal with json.RawMessage for parameters and return results). Previous versions of this package provided methods for dcrwallet's JSON-RPC server in addition to dcrd. These were removed in major version 6 of this module. Projects depending on these calls are advised to use the decred.org/dcrwallet/rpc/client/dcrwallet package which is able to wrap rpcclient.Client using the aforementioned RawRequest method: Using struct embedding, it is possible to create a single variable with the combined method sets of both rpcclient.Client and dcrwallet.Client: This technique is valuable as dcrwallet (syncing in RPC mode) will passthrough any unknown RPCs to the backing dcrd server, proxying requests and responses for the client. There are 3 categories of errors that will be returned throughout this package: The first category of errors are typically one of ErrInvalidAuth, ErrInvalidEndpoint, ErrClientDisconnect, or ErrClientShutdown. NOTE: The ErrClientDisconnect will not be returned unless the DisableAutoReconnect flag is set since the client automatically handles reconnect by default as previously described. The second category of errors typically indicates a programmer error and as such the type can vary, but usually will be best handled by simply showing/logging it. The third category of errors, that is errors returned by the server, can be detected by type asserting the error in a *dcrjson.RPCError. For example, to detect if a command is unimplemented by the remote RPC server: The following full-blown client examples are in the examples directory:
Package rpcclient implements a websocket-enabled Decred JSON-RPC client. This client provides a robust and easy to use client for interfacing with a Decred RPC server that uses a mostly btcd/bitcoin core style Decred JSON-RPC API. This client has been tested with dcrd (https://github.com/decred/dcrd) and dcrwallet (https://github.com/decred/dcrwallet). In addition to the compatible standard HTTP POST JSON-RPC API, dcrd and dcrwallet provide a websocket interface that is more efficient than the standard HTTP POST method of accessing RPC. The section below discusses the differences between HTTP POST and websockets. By default, this client assumes the RPC server supports websockets and has TLS enabled. In practice, this currently means it assumes you are talking to dcrd or dcrwallet by default. However, configuration options are provided to fall back to HTTP POST and disable TLS to support talking with inferior bitcoin core style RPC servers. In HTTP POST-based JSON-RPC, every request creates a new HTTP connection, issues the call, waits for the response, and closes the connection. This adds quite a bit of overhead to every call and lacks flexibility for features such as notifications. In contrast, the websocket-based JSON-RPC interface provided by dcrd and dcrwallet only uses a single connection that remains open and allows asynchronous bi-directional communication. The websocket interface supports all of the same commands as HTTP POST, but they can be invoked without having to go through a connect/disconnect cycle for every call. In addition, the websocket interface provides other nice features such as the ability to register for asynchronous notifications of various events. The client provides both a synchronous (blocking) and asynchronous API. The synchronous (blocking) API is typically sufficient for most use cases. It works by issuing the RPC and blocking until the response is received. This allows straightforward code where you have the response as soon as the function returns. The asynchronous API works on the concept of futures. When you invoke the async version of a command, it will quickly return an instance of a type that promises to provide the result of the RPC at some future time. In the background, the RPC call is issued and the result is stored in the returned instance. Invoking the Receive method on the returned instance will either return the result immediately if it has already arrived, or block until it has. This is useful since it provides the caller with greater control over concurrency. The first important part of notifications is to realize that they will only work when connected via websockets. This should intuitively make sense because HTTP POST mode does not keep a connection open! All notifications provided by dcrd require registration to opt-in. For example, if you want to be notified when funds are received by a set of addresses, you register the addresses via the NotifyReceived (or NotifyReceivedAsync) function. Notifications are exposed by the client through the use of callback handlers which are setup via a NotificationHandlers instance that is specified by the caller when creating the client. It is important that these notification handlers complete quickly since they are intentionally in the main read loop and will block further reads until they complete. This provides the caller with the flexibility to decide what to do when notifications are coming in faster than they are being handled. In particular this means issuing a blocking RPC call from a callback handler will cause a deadlock as more server responses won't be read until the callback returns, but the callback would be waiting for a response. Thus, any additional RPCs must be issued an a completely decoupled manner. By default, when running in websockets mode, this client will automatically keep trying to reconnect to the RPC server should the connection be lost. There is a back-off in between each connection attempt until it reaches one try per minute. Once a connection is re-established, all previously registered notifications are automatically re-registered and any in-flight commands are re-issued. This means from the caller's perspective, the request simply takes longer to complete. The caller may invoke the Shutdown method on the client to force the client to cease reconnect attempts and return ErrClientShutdown for all outstanding commands. The automatic reconnection can be disabled by setting the DisableAutoReconnect flag to true in the connection config when creating the client. This package only provides methods for dcrd RPCs. Using the websocket connection and request-response mapping provided by rpcclient with arbitrary methods or different servers is possible through the generic RawRequest and RawRequestAsync methods (each of which deal with json.RawMessage for parameters and return results). Previous versions of this package provided methods for dcrwallet's JSON-RPC server in addition to dcrd. These were removed in major version 6 of this module. Projects depending on these calls are advised to use the decred.org/dcrwallet/rpc/client/dcrwallet package which is able to wrap rpcclient.Client using the aforementioned RawRequest method: Using struct embedding, it is possible to create a single variable with the combined method sets of both rpcclient.Client and dcrwallet.Client: This technique is valuable as dcrwallet (syncing in RPC mode) will passthrough any unknown RPCs to the backing dcrd server, proxying requests and responses for the client. There are 3 categories of errors that will be returned throughout this package: The first category of errors are typically one of ErrInvalidAuth, ErrInvalidEndpoint, ErrClientDisconnect, or ErrClientShutdown. NOTE: The ErrClientDisconnect will not be returned unless the DisableAutoReconnect flag is set since the client automatically handles reconnect by default as previously described. The second category of errors typically indicates a programmer error and as such the type can vary, but usually will be best handled by simply showing/logging it. The third category of errors, that is errors returned by the server, can be detected by type asserting the error in a *dcrjson.RPCError. For example, to detect if a command is unimplemented by the remote RPC server: The following full-blown client examples are in the examples directory:
Package sdk is the official AWS SDK for the Go programming language. The AWS SDK for Go provides APIs and utilities that developers can use to build Go applications that use AWS services, such as Amazon Simple Storage Service (Amazon S3). The SDK removes the complexity of coding directly against a web service interface. It hides a lot of the lower-level plumbing, such as authentication, request retries, and error handling. The SDK also includes helpful utilities on top of the AWS APIs that add additional capabilities and functionality. For example, the Amazon S3 Download and Upload Manager will automatically split up large objects into multiple parts and transfer them concurrently. See the s3manager package documentation for more information. https://docs.aws.amazon.com/sdk-for-go/api/service/s3/s3manager/ Checkout the Getting Started Guide and API Reference Docs detailed the SDK's components and details on each AWS client the SDK supports. The Getting Started Guide provides examples and detailed description of how to get setup with the SDK. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/welcome.html The API Reference Docs include a detailed breakdown of the SDK's components such as utilities and AWS clients. Use this as a reference of the Go types included with the SDK, such as AWS clients, API operations, and API parameters. https://docs.aws.amazon.com/sdk-for-go/api/ The SDK is composed of two main components, SDK core, and service clients. The SDK core packages are all available under the aws package at the root of the SDK. Each client for a supported AWS service is available within its own package under the service folder at the root of the SDK. aws - SDK core, provides common shared types such as Config, Logger, and utilities to make working with API parameters easier. awserr - Provides the error interface that the SDK will use for all errors that occur in the SDK's processing. This includes service API response errors as well. The Error type is made up of a code and message. Cast the SDK's returned error type to awserr.Error and call the Code method to compare returned error to specific error codes. See the package's documentation for additional values that can be extracted such as RequestId. credentials - Provides the types and built in credentials providers the SDK will use to retrieve AWS credentials to make API requests with. Nested under this folder are also additional credentials providers such as stscreds for assuming IAM roles, and ec2rolecreds for EC2 Instance roles. endpoints - Provides the AWS Regions and Endpoints metadata for the SDK. Use this to lookup AWS service endpoint information such as which services are in a region, and what regions a service is in. Constants are also provided for all region identifiers, e.g UsWest2RegionID for "us-west-2". session - Provides initial default configuration, and load configuration from external sources such as environment and shared credentials file. request - Provides the API request sending, and retry logic for the SDK. This package also includes utilities for defining your own request retryer, and configuring how the SDK processes the request. service - Clients for AWS services. All services supported by the SDK are available under this folder. The SDK includes the Go types and utilities you can use to make requests to AWS service APIs. Within the service folder at the root of the SDK you'll find a package for each AWS service the SDK supports. All service clients follows a common pattern of creation and usage. When creating a client for an AWS service you'll first need to have a Session value constructed. The Session provides shared configuration that can be shared between your service clients. When service clients are created you can pass in additional configuration via the aws.Config type to override configuration provided by in the Session to create service client instances with custom configuration. Once the service's client is created you can use it to make API requests the AWS service. These clients are safe to use concurrently. In the AWS SDK for Go, you can configure settings for service clients, such as the log level and maximum number of retries. Most settings are optional; however, for each service client, you must specify a region and your credentials. The SDK uses these values to send requests to the correct AWS region and sign requests with the correct credentials. You can specify these values as part of a session or as environment variables. See the SDK's configuration guide for more information. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html See the session package documentation for more information on how to use Session with the SDK. https://docs.aws.amazon.com/sdk-for-go/api/aws/session/ See the Config type in the aws package for more information on configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config When using the SDK you'll generally need your AWS credentials to authenticate with AWS services. The SDK supports multiple methods of supporting these credentials. By default the SDK will source credentials automatically from its default credential chain. See the session package for more information on this chain, and how to configure it. The common items in the credential chain are the following: Environment Credentials - Set of environment variables that are useful when sub processes are created for specific roles. Shared Credentials file (~/.aws/credentials) - This file stores your credentials based on a profile name and is useful for local development. Credentials can be configured in code as well by setting the Config's Credentials value to a custom provider or using one of the providers included with the SDK to bypass the default credential chain and use a custom one. This is helpful when you want to instruct the SDK to only use a specific set of credentials or providers. This example creates a credential provider for assuming an IAM role, "myRoleARN" and configures the S3 service client to use that role for API requests. The SDK has support for the shared configuration file (~/.aws/config). This support can be enabled by setting the environment variable, "AWS_SDK_LOAD_CONFIG=1", or enabling the feature in code when creating a Session via the Option's SharedConfigState parameter. In addition to the credentials you'll need to specify the region the SDK will use to make AWS API requests to. In the SDK you can specify the region either with an environment variable, or directly in code when a Session or service client is created. The last value specified in code wins if the region is specified multiple ways. To set the region via the environment variable set the "AWS_REGION" to the region you want to the SDK to use. Using this method to set the region will allow you to run your application in multiple regions without needing additional code in the application to select the region. The endpoints package includes constants for all regions the SDK knows. The values are all suffixed with RegionID. These values are helpful, because they reduce the need to type the region string manually. To set the region on a Session use the aws package's Config struct parameter Region to the AWS region you want the service clients created from the session to use. This is helpful when you want to create multiple service clients, and all of the clients make API requests to the same region. In addition to setting the region when creating a Session you can also set the region on a per service client bases. This overrides the region of a Session. This is helpful when you want to create service clients in specific regions different from the Session's region. See the Config type in the aws package for more information and additional options such as setting the Endpoint, and other service client configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config Once the client is created you can make an API request to the service. Each API method takes a input parameter, and returns the service response and an error. The SDK provides methods for making the API call in multiple ways. In this list we'll use the S3 ListObjects API as an example for the different ways of making API requests. ListObjects - Base API operation that will make the API request to the service. ListObjectsRequest - API methods suffixed with Request will construct the API request, but not send it. This is also helpful when you want to get a presigned URL for a request, and share the presigned URL instead of your application making the request directly. ListObjectsPages - Same as the base API operation, but uses a callback to automatically handle pagination of the API's response. ListObjectsWithContext - Same as base API operation, but adds support for the Context pattern. This is helpful for controlling the canceling of in flight requests. See the Go standard library context package for more information. This method also takes request package's Option functional options as the variadic argument for modifying how the request will be made, or extracting information from the raw HTTP response. ListObjectsPagesWithContext - same as ListObjectsPages, but adds support for the Context pattern. Similar to ListObjectsWithContext this method also takes the request package's Option function option types as the variadic argument. In addition to the API operations the SDK also includes several higher level methods that abstract checking for and waiting for an AWS resource to be in a desired state. In this list we'll use WaitUntilBucketExists to demonstrate the different forms of waiters. WaitUntilBucketExists. - Method to make API request to query an AWS service for a resource's state. Will return successfully when that state is accomplished. WaitUntilBucketExistsWithContext - Same as WaitUntilBucketExists, but adds support for the Context pattern. In addition these methods take request package's WaiterOptions to configure the waiter, and how underlying request will be made by the SDK. The API method will document which error codes the service might return for the operation. These errors will also be available as const strings prefixed with "ErrCode" in the service client's package. If there are no errors listed in the API's SDK documentation you'll need to consult the AWS service's API documentation for the errors that could be returned. Pagination helper methods are suffixed with "Pages", and provide the functionality needed to round trip API page requests. Pagination methods take a callback function that will be called for each page of the API's response. Waiter helper methods provide the functionality to wait for an AWS resource state. These methods abstract the logic needed to to check the state of an AWS resource, and wait until that resource is in a desired state. The waiter will block until the resource is in the state that is desired, an error occurs, or the waiter times out. If a resource times out the error code returned will be request.WaiterResourceNotReadyErrorCode. This example shows a complete working Go file which will upload a file to S3 and use the Context pattern to implement timeout logic that will cancel the request if it takes too long. This example highlights how to use sessions, create a service client, make a request, handle the error, and process the response.
Package rpcclient implements a websocket-enabled Decred JSON-RPC client. This client provides a robust and easy to use client for interfacing with a Decred RPC server that uses a mostly btcd/bitcoin core style Decred JSON-RPC API. This client has been tested with dcrd (https://github.com/decred/dcrd) and dcrwallet (https://github.com/decred/dcrwallet). In addition to the compatible standard HTTP POST JSON-RPC API, dcrd and dcrwallet provide a websocket interface that is more efficient than the standard HTTP POST method of accessing RPC. The section below discusses the differences between HTTP POST and websockets. By default, this client assumes the RPC server supports websockets and has TLS enabled. In practice, this currently means it assumes you are talking to dcrd or dcrwallet by default. However, configuration options are provided to fall back to HTTP POST and disable TLS to support talking with inferior bitcoin core style RPC servers. In HTTP POST-based JSON-RPC, every request creates a new HTTP connection, issues the call, waits for the response, and closes the connection. This adds quite a bit of overhead to every call and lacks flexibility for features such as notifications. In contrast, the websocket-based JSON-RPC interface provided by dcrd and dcrwallet only uses a single connection that remains open and allows asynchronous bi-directional communication. The websocket interface supports all of the same commands as HTTP POST, but they can be invoked without having to go through a connect/disconnect cycle for every call. In addition, the websocket interface provides other nice features such as the ability to register for asynchronous notifications of various events. The client provides both a synchronous (blocking) and asynchronous API. The synchronous (blocking) API is typically sufficient for most use cases. It works by issuing the RPC and blocking until the response is received. This allows straightforward code where you have the response as soon as the function returns. The asynchronous API works on the concept of futures. When you invoke the async version of a command, it will quickly return an instance of a type that promises to provide the result of the RPC at some future time. In the background, the RPC call is issued and the result is stored in the returned instance. Invoking the Receive method on the returned instance will either return the result immediately if it has already arrived, or block until it has. This is useful since it provides the caller with greater control over concurrency. The first important part of notifications is to realize that they will only work when connected via websockets. This should intuitively make sense because HTTP POST mode does not keep a connection open! All notifications provided by dcrd require registration to opt-in. For example, if you want to be notified when funds are received by a set of addresses, you register the addresses via the NotifyReceived (or NotifyReceivedAsync) function. Notifications are exposed by the client through the use of callback handlers which are setup via a NotificationHandlers instance that is specified by the caller when creating the client. It is important that these notification handlers complete quickly since they are intentionally in the main read loop and will block further reads until they complete. This provides the caller with the flexibility to decide what to do when notifications are coming in faster than they are being handled. In particular this means issuing a blocking RPC call from a callback handler will cause a deadlock as more server responses won't be read until the callback returns, but the callback would be waiting for a response. Thus, any additional RPCs must be issued an a completely decoupled manner. By default, when running in websockets mode, this client will automatically keep trying to reconnect to the RPC server should the connection be lost. There is a back-off in between each connection attempt until it reaches one try per minute. Once a connection is re-established, all previously registered notifications are automatically re-registered and any in-flight commands are re-issued. This means from the caller's perspective, the request simply takes longer to complete. The caller may invoke the Shutdown method on the client to force the client to cease reconnect attempts and return ErrClientShutdown for all outstanding commands. The automatic reconnection can be disabled by setting the DisableAutoReconnect flag to true in the connection config when creating the client. Minor RPC Server Differences and Chain/Wallet Separation Some of the commands are extensions specific to a particular RPC server. For example, the DebugLevel call is an extension only provided by dcrd (and dcrwallet passthrough). Therefore if you call one of these commands against an RPC server that doesn't provide them, you will get an unimplemented error from the server. An effort has been made to call out which commmands are extensions in their documentation. Also, it is important to realize that dcrd intentionally separates the wallet functionality into a separate process named dcrwallet. This means if you are connected to the dcrd RPC server directly, only the RPCs which are related to chain services will be available. Depending on your application, you might only need chain-related RPCs. In contrast, dcrwallet provides pass through treatment for chain-related RPCs, so it supports them in addition to wallet-related RPCs. There are 3 categories of errors that will be returned throughout this package: The first category of errors are typically one of ErrInvalidAuth, ErrInvalidEndpoint, ErrClientDisconnect, or ErrClientShutdown. NOTE: The ErrClientDisconnect will not be returned unless the DisableAutoReconnect flag is set since the client automatically handles reconnect by default as previously described. The second category of errors typically indicates a programmer error and as such the type can vary, but usually will be best handled by simply showing/logging it. The third category of errors, that is errors returned by the server, can be detected by type asserting the error in a *dcrjson.RPCError. For example, to detect if a command is unimplemented by the remote RPC server: The following full-blown client examples are in the examples directory:
Package btcrpcclient implements a websocket-enabled Bitcoin JSON-RPC client. This client provides a robust and easy to use client for interfacing with a Bitcoin RPC server that uses a btcd/bitcoin core compatible Bitcoin JSON-RPC API. This client has been tested with btcd (https://github.com/btcsuite/btcd), btcwallet (https://github.com/btcsuite/btcwallet), and bitcoin core (https://github.com/bitcoin). In addition to the compatible standard HTTP POST JSON-RPC API, btcd and btcwallet provide a websocket interface that is more efficient than the standard HTTP POST method of accessing RPC. The section below discusses the differences between HTTP POST and websockets. By default, this client assumes the RPC server supports websockets and has TLS enabled. In practice, this currently means it assumes you are talking to btcd or btcwallet by default. However, configuration options are provided to fall back to HTTP POST and disable TLS to support talking with inferior bitcoin core style RPC servers. In HTTP POST-based JSON-RPC, every request creates a new HTTP connection, issues the call, waits for the response, and closes the connection. This adds quite a bit of overhead to every call and lacks flexibility for features such as notifications. In contrast, the websocket-based JSON-RPC interface provided by btcd and btcwallet only uses a single connection that remains open and allows asynchronous bi-directional communication. The websocket interface supports all of the same commands as HTTP POST, but they can be invoked without having to go through a connect/disconnect cycle for every call. In addition, the websocket interface provides other nice features such as the ability to register for asynchronous notifications of various events. The client provides both a synchronous (blocking) and asynchronous API. The synchronous (blocking) API is typically sufficient for most use cases. It works by issuing the RPC and blocking until the response is received. This allows straightforward code where you have the response as soon as the function returns. The asynchronous API works on the concept of futures. When you invoke the async version of a command, it will quickly return an instance of a type that promises to provide the result of the RPC at some future time. In the background, the RPC call is issued and the result is stored in the returned instance. Invoking the Receive method on the returned instance will either return the result immediately if it has already arrived, or block until it has. This is useful since it provides the caller with greater control over concurrency. The first important part of notifications is to realize that they will only work when connected via websockets. This should intuitively make sense because HTTP POST mode does not keep a connection open! All notifications provided by btcd require registration to opt-in. For example, if you want to be notified when funds are received by a set of addresses, you register the addresses via the NotifyReceived (or NotifyReceivedAsync) function. Notifications are exposed by the client through the use of callback handlers which are setup via a NotificationHandlers instance that is specified by the caller when creating the client. It is important that these notification handlers complete quickly since they are intentionally in the main read loop and will block further reads until they complete. This provides the caller with the flexibility to decide what to do when notifications are coming in faster than they are being handled. In particular this means issuing a blocking RPC call from a callback handler will cause a deadlock as more server responses won't be read until the callback returns, but the callback would be waiting for a response. Thus, any additional RPCs must be issued an a completely decoupled manner. By default, when running in websockets mode, this client will automatically keep trying to reconnect to the RPC server should the connection be lost. There is a back-off in between each connection attempt until it reaches one try per minute. Once a connection is re-established, all previously registered notifications are automatically re-registered and any in-flight commands are re-issued. This means from the caller's perspective, the request simply takes longer to complete. The caller may invoke the Shutdown method on the client to force the client to cease reconnect attempts and return ErrClientShutdown for all outstanding commands. The automatic reconnection can be disabled by setting the DisableAutoReconnect flag to true in the connection config when creating the client. Minor RPC Server Differences and Chain/Wallet Separation Some of the commands are extensions specific to a particular RPC server. For example, the DebugLevel call is an extension only provided by btcd (and btcwallet passthrough). Therefore if you call one of these commands against an RPC server that doesn't provide them, you will get an unimplemented error from the server. An effort has been made to call out which commmands are extensions in their documentation. Also, it is important to realize that btcd intentionally separates the wallet functionality into a separate process named btcwallet. This means if you are connected to the btcd RPC server directly, only the RPCs which are related to chain services will be available. Depending on your application, you might only need chain-related RPCs. In contrast, btcwallet provides pass through treatment for chain-related RPCs, so it supports them in addition to wallet-related RPCs. There are 3 categories of errors that will be returned throughout this package: The first category of errors are typically one of ErrInvalidAuth, ErrInvalidEndpoint, ErrClientDisconnect, or ErrClientShutdown. NOTE: The ErrClientDisconnect will not be returned unless the DisableAutoReconnect flag is set since the client automatically handles reconnect by default as previously described. The second category of errors typically indicates a programmer error and as such the type can vary, but usually will be best handled by simply showing/logging it. The third category of errors, that is errors returned by the server, can be detected by type asserting the error in a *btcjson.RPCError. For example, to detect if a command is unimplemented by the remote RPC server: The following full-blown client examples are in the examples directory:
Package sdk is the official AWS SDK for the Go programming language. The AWS SDK for Go provides APIs and utilities that developers can use to build Go applications that use AWS services, such as Amazon Elastic Compute Cloud (Amazon EC2) and Amazon Simple Storage Service (Amazon S3). The SDK removes the complexity of coding directly against a web service interface. It hides a lot of the lower-level plumbing, such as authentication, request retries, and error handling. The SDK also includes helpful utilities on top of the AWS APIs that add additional capabilities and functionality. For example, the Amazon S3 Download and Upload Manager will automatically split up large objects into multiple parts and transfer them concurrently. See the s3manager package documentation for more information. https://docs.aws.amazon.com/sdk-for-go/api/service/s3/s3manager/ Checkout the Getting Started Guide and API Reference Docs detailed the SDK's components and details on each AWS client the SDK supports. The Getting Started Guide provides examples and detailed description of how to get setup with the SDK. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/welcome.html The API Reference Docs include a detailed breakdown of the SDK's components such as utilities and AWS clients. Use this as a reference of the Go types included with the SDK, such as AWS clients, API operations, and API parameters. https://docs.aws.amazon.com/sdk-for-go/api/ The SDK is composed of two main components, SDK core, and service clients. The SDK core packages are all available under the aws package at the root of the SDK. Each client for a supported AWS service is available within its own package under the service folder at the root of the SDK. aws - SDK core, provides common shared types such as Config, Logger, and utilities to make working with API parameters easier. awserr - Provides the error interface that the SDK will use for all errors that occur in the SDK's processing. This includes service API response errors as well. The Error type is made up of a code and message. Cast the SDK's returned error type to awserr.Error and call the Code method to compare returned error to specific error codes. See the package's documentation for additional values that can be extracted such as RequestId. credentials - Provides the types and built in credentials providers the SDK will use to retrieve AWS credentials to make API requests with. Nested under this folder are also additional credentials providers such as stscreds for assuming IAM roles, and ec2rolecreds for EC2 Instance roles. endpoints - Provides the AWS Regions and Endpoints metadata for the SDK. Use this to lookup AWS service endpoint information such as which services are in a region, and what regions a service is in. Constants are also provided for all region identifiers, e.g UsWest2RegionID for "us-west-2". session - Provides initial default configuration, and load configuration from external sources such as environment and shared credentials file. request - Provides the API request sending, and retry logic for the SDK. This package also includes utilities for defining your own request retryer, and configuring how the SDK processes the request. service - Clients for AWS services. All services supported by the SDK are available under this folder. The SDK includes the Go types and utilities you can use to make requests to AWS service APIs. Within the service folder at the root of the SDK you'll find a package for each AWS service the SDK supports. All service clients follows a common pattern of creation and usage. When creating a client for an AWS service you'll first need to have a Session value constructed. The Session provides shared configuration that can be shared between your service clients. When service clients are created you can pass in additional configuration via the aws.Config type to override configuration provided by in the Session to create service client instances with custom configuration. Once the service's client is created you can use it to make API requests the AWS service. These clients are safe to use concurrently. In the AWS SDK for Go, you can configure settings for service clients, such as the log level and maximum number of retries. Most settings are optional; however, for each service client, you must specify a region and your credentials. The SDK uses these values to send requests to the correct AWS region and sign requests with the correct credentials. You can specify these values as part of a session or as environment variables. See the SDK's configuration guide for more information. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html See the session package documentation for more information on how to use Session with the SDK. https://docs.aws.amazon.com/sdk-for-go/api/aws/session/ See the Config type in the aws package for more information on configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config When using the SDK you'll generally need your AWS credentials to authenticate with AWS services. The SDK supports multiple methods of supporting these credentials. By default the SDK will source credentials automatically from its default credential chain. See the session package for more information on this chain, and how to configure it. The common items in the credential chain are the following: Environment Credentials - Set of environment variables that are useful when sub processes are created for specific roles. Shared Credentials file (~/.aws/credentials) - This file stores your credentials based on a profile name and is useful for local development. EC2 Instance Role Credentials - Use EC2 Instance Role to assign credentials to application running on an EC2 instance. This removes the need to manage credential files in production. Credentials can be configured in code as well by setting the Config's Credentials value to a custom provider or using one of the providers included with the SDK to bypass the default credential chain and use a custom one. This is helpful when you want to instruct the SDK to only use a specific set of credentials or providers. This example creates a credential provider for assuming an IAM role, "myRoleARN" and configures the S3 service client to use that role for API requests. See the credentials package documentation for more information on credential providers included with the SDK, and how to customize the SDK's usage of credentials. https://docs.aws.amazon.com/sdk-for-go/api/aws/credentials The SDK has support for the shared configuration file (~/.aws/config). This support can be enabled by setting the environment variable, "AWS_SDK_LOAD_CONFIG=1", or enabling the feature in code when creating a Session via the Option's SharedConfigState parameter. In addition to the credentials you'll need to specify the region the SDK will use to make AWS API requests to. In the SDK you can specify the region either with an environment variable, or directly in code when a Session or service client is created. The last value specified in code wins if the region is specified multiple ways. To set the region via the environment variable set the "AWS_REGION" to the region you want to the SDK to use. Using this method to set the region will allow you to run your application in multiple regions without needing additional code in the application to select the region. The endpoints package includes constants for all regions the SDK knows. The values are all suffixed with RegionID. These values are helpful, because they reduce the need to type the region string manually. To set the region on a Session use the aws package's Config struct parameter Region to the AWS region you want the service clients created from the session to use. This is helpful when you want to create multiple service clients, and all of the clients make API requests to the same region. See the endpoints package for the AWS Regions and Endpoints metadata. https://docs.aws.amazon.com/sdk-for-go/api/aws/endpoints/ In addition to setting the region when creating a Session you can also set the region on a per service client bases. This overrides the region of a Session. This is helpful when you want to create service clients in specific regions different from the Session's region. See the Config type in the aws package for more information and additional options such as setting the Endpoint, and other service client configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config Once the client is created you can make an API request to the service. Each API method takes a input parameter, and returns the service response and an error. The SDK provides methods for making the API call in multiple ways. In this list we'll use the S3 ListObjects API as an example for the different ways of making API requests. ListObjects - Base API operation that will make the API request to the service. ListObjectsRequest - API methods suffixed with Request will construct the API request, but not send it. This is also helpful when you want to get a presigned URL for a request, and share the presigned URL instead of your application making the request directly. ListObjectsPages - Same as the base API operation, but uses a callback to automatically handle pagination of the API's response. ListObjectsWithContext - Same as base API operation, but adds support for the Context pattern. This is helpful for controlling the canceling of in flight requests. See the Go standard library context package for more information. This method also takes request package's Option functional options as the variadic argument for modifying how the request will be made, or extracting information from the raw HTTP response. ListObjectsPagesWithContext - same as ListObjectsPages, but adds support for the Context pattern. Similar to ListObjectsWithContext this method also takes the request package's Option function option types as the variadic argument. In addition to the API operations the SDK also includes several higher level methods that abstract checking for and waiting for an AWS resource to be in a desired state. In this list we'll use WaitUntilBucketExists to demonstrate the different forms of waiters. WaitUntilBucketExists. - Method to make API request to query an AWS service for a resource's state. Will return successfully when that state is accomplished. WaitUntilBucketExistsWithContext - Same as WaitUntilBucketExists, but adds support for the Context pattern. In addition these methods take request package's WaiterOptions to configure the waiter, and how underlying request will be made by the SDK. The API method will document which error codes the service might return for the operation. These errors will also be available as const strings prefixed with "ErrCode" in the service client's package. If there are no errors listed in the API's SDK documentation you'll need to consult the AWS service's API documentation for the errors that could be returned. Pagination helper methods are suffixed with "Pages", and provide the functionality needed to round trip API page requests. Pagination methods take a callback function that will be called for each page of the API's response. Waiter helper methods provide the functionality to wait for an AWS resource state. These methods abstract the logic needed to to check the state of an AWS resource, and wait until that resource is in a desired state. The waiter will block until the resource is in the state that is desired, an error occurs, or the waiter times out. If a resource times out the error code returned will be request.WaiterResourceNotReadyErrorCode. This example shows a complete working Go file which will upload a file to S3 and use the Context pattern to implement timeout logic that will cancel the request if it takes too long. This example highlights how to use sessions, create a service client, make a request, handle the error, and process the response.
Package xhr provides GopherJS bindings for the XMLHttpRequest API. This package provides two ways of using XHR directly. The first one is via the Request type and the NewRequest function. This way, one can specify all desired details of the request's behaviour (timeout, response format). It also allows access to response details such as the status code. Furthermore, using this way is required if one wants to abort in-flight requests or if one wants to register additional event listeners. The other way is via the package function Send, which is a helper that internally constructs a Request and assigns sane defaults to it. It's the easiest way of doing an XHR request that should just return unprocessed data. If you don't need to/want to deal with the underlying details of XHR, you may also just use the net/http.DefaultTransport, which GopherJS replaces with an XHR-enabled version, making this package useless most of the time.
Package sdk is the official AWS SDK for the Go programming language. The AWS SDK for Go provides APIs and utilities that developers can use to build Go applications that use AWS services, such as Amazon Elastic Compute Cloud (Amazon EC2) and Amazon Simple Storage Service (Amazon S3). The SDK removes the complexity of coding directly against a web service interface. It hides a lot of the lower-level plumbing, such as authentication, request retries, and error handling. The SDK also includes helpful utilities on top of the AWS APIs that add additional capabilities and functionality. For example, the Amazon S3 Download and Upload Manager will automatically split up large objects into multiple parts and transfer them concurrently. See the s3manager package documentation for more information. https://docs.aws.amazon.com/sdk-for-go/api/service/s3/s3manager/ Checkout the Getting Started Guide and API Reference Docs detailed the SDK's components and details on each AWS client the SDK supports. The Getting Started Guide provides examples and detailed description of how to get setup with the SDK. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/welcome.html The API Reference Docs include a detailed breakdown of the SDK's components such as utilities and AWS clients. Use this as a reference of the Go types included with the SDK, such as AWS clients, API operations, and API parameters. https://docs.aws.amazon.com/sdk-for-go/api/ The SDK is composed of two main components, SDK core, and service clients. The SDK core packages are all available under the aws package at the root of the SDK. Each client for a supported AWS service is available within its own package under the service folder at the root of the SDK. aws - SDK core, provides common shared types such as Config, Logger, and utilities to make working with API parameters easier. awserr - Provides the error interface that the SDK will use for all errors that occur in the SDK's processing. This includes service API response errors as well. The Error type is made up of a code and message. Cast the SDK's returned error type to awserr.Error and call the Code method to compare returned error to specific error codes. See the package's documentation for additional values that can be extracted such as RequestId. credentials - Provides the types and built in credentials providers the SDK will use to retrieve AWS credentials to make API requests with. Nested under this folder are also additional credentials providers such as stscreds for assuming IAM roles, and ec2rolecreds for EC2 Instance roles. endpoints - Provides the AWS Regions and Endpoints metadata for the SDK. Use this to lookup AWS service endpoint information such as which services are in a region, and what regions a service is in. Constants are also provided for all region identifiers, e.g UsWest2RegionID for "us-west-2". session - Provides initial default configuration, and load configuration from external sources such as environment and shared credentials file. request - Provides the API request sending, and retry logic for the SDK. This package also includes utilities for defining your own request retryer, and configuring how the SDK processes the request. service - Clients for AWS services. All services supported by the SDK are available under this folder. The SDK includes the Go types and utilities you can use to make requests to AWS service APIs. Within the service folder at the root of the SDK you'll find a package for each AWS service the SDK supports. All service clients follows a common pattern of creation and usage. When creating a client for an AWS service you'll first need to have a Session value constructed. The Session provides shared configuration that can be shared between your service clients. When service clients are created you can pass in additional configuration via the nifcloud.Config type to override configuration provided by in the Session to create service client instances with custom configuration. Once the service's client is created you can use it to make API requests the AWS service. These clients are safe to use concurrently. In the AWS SDK for Go, you can configure settings for service clients, such as the log level and maximum number of retries. Most settings are optional; however, for each service client, you must specify a region and your credentials. The SDK uses these values to send requests to the correct AWS region and sign requests with the correct credentials. You can specify these values as part of a session or as environment variables. See the SDK's configuration guide for more information. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html See the session package documentation for more information on how to use Session with the SDK. https://docs.aws.amazon.com/sdk-for-go/api/nifcloud/session/ See the Config type in the aws package for more information on configuration options. https://docs.aws.amazon.com/sdk-for-go/api/nifcloud/#Config When using the SDK you'll generally need your AWS credentials to authenticate with AWS services. The SDK supports multiple methods of supporting these credentials. By default the SDK will source credentials automatically from its default credential chain. See the session package for more information on this chain, and how to configure it. The common items in the credential chain are the following: Environment Credentials - Set of environment variables that are useful when sub processes are created for specific roles. Shared Credentials file (~/.nifcloud/credentials) - This file stores your credentials based on a profile name and is useful for local development. EC2 Instance Role Credentials - Use EC2 Instance Role to assign credentials to application running on an EC2 instance. This removes the need to manage credential files in production. Credentials can be configured in code as well by setting the Config's Credentials value to a custom provider or using one of the providers included with the SDK to bypass the default credential chain and use a custom one. This is helpful when you want to instruct the SDK to only use a specific set of credentials or providers. This example creates a credential provider for assuming an IAM role, "myRoleARN" and configures the S3 service client to use that role for API requests. See the credentials package documentation for more information on credential providers included with the SDK, and how to customize the SDK's usage of credentials. https://docs.aws.amazon.com/sdk-for-go/api/nifcloud/credentials The SDK has support for the shared configuration file (~/.nifcloud/config). This support can be enabled by setting the environment variable, "AWS_SDK_LOAD_CONFIG=1", or enabling the feature in code when creating a Session via the Option's SharedConfigState parameter. In addition to the credentials you'll need to specify the region the SDK will use to make AWS API requests to. In the SDK you can specify the region either with an environment variable, or directly in code when a Session or service client is created. The last value specified in code wins if the region is specified multiple ways. To set the region via the environment variable set the "AWS_REGION" to the region you want to the SDK to use. Using this method to set the region will allow you to run your application in multiple regions without needing additional code in the application to select the region. The endpoints package includes constants for all regions the SDK knows. The values are all suffixed with RegionID. These values are helpful, because they reduce the need to type the region string manually. To set the region on a Session use the aws package's Config struct parameter Region to the AWS region you want the service clients created from the session to use. This is helpful when you want to create multiple service clients, and all of the clients make API requests to the same region. See the endpoints package for the AWS Regions and Endpoints metadata. https://docs.aws.amazon.com/sdk-for-go/api/nifcloud/endpoints/ In addition to setting the region when creating a Session you can also set the region on a per service client bases. This overrides the region of a Session. This is helpful when you want to create service clients in specific regions different from the Session's region. See the Config type in the aws package for more information and additional options such as setting the Endpoint, and other service client configuration options. https://docs.aws.amazon.com/sdk-for-go/api/nifcloud/#Config Once the client is created you can make an API request to the service. Each API method takes a input parameter, and returns the service response and an error. The SDK provides methods for making the API call in multiple ways. In this list we'll use the S3 ListObjects API as an example for the different ways of making API requests. ListObjects - Base API operation that will make the API request to the service. ListObjectsRequest - API methods suffixed with Request will construct the API request, but not send it. This is also helpful when you want to get a presigned URL for a request, and share the presigned URL instead of your application making the request directly. ListObjectsPages - Same as the base API operation, but uses a callback to automatically handle pagination of the API's response. ListObjectsWithContext - Same as base API operation, but adds support for the Context pattern. This is helpful for controlling the canceling of in flight requests. See the Go standard library context package for more information. This method also takes request package's Option functional options as the variadic argument for modifying how the request will be made, or extracting information from the raw HTTP response. ListObjectsPagesWithContext - same as ListObjectsPages, but adds support for the Context pattern. Similar to ListObjectsWithContext this method also takes the request package's Option function option types as the variadic argument. In addition to the API operations the SDK also includes several higher level methods that abstract checking for and waiting for an AWS resource to be in a desired state. In this list we'll use WaitUntilBucketExists to demonstrate the different forms of waiters. WaitUntilBucketExists. - Method to make API request to query an AWS service for a resource's state. Will return successfully when that state is accomplished. WaitUntilBucketExistsWithContext - Same as WaitUntilBucketExists, but adds support for the Context pattern. In addition these methods take request package's WaiterOptions to configure the waiter, and how underlying request will be made by the SDK. The API method will document which error codes the service might return for the operation. These errors will also be available as const strings prefixed with "ErrCode" in the service client's package. If there are no errors listed in the API's SDK documentation you'll need to consult the AWS service's API documentation for the errors that could be returned. Pagination helper methods are suffixed with "Pages", and provide the functionality needed to round trip API page requests. Pagination methods take a callback function that will be called for each page of the API's response. Waiter helper methods provide the functionality to wait for an AWS resource state. These methods abstract the logic needed to to check the state of an AWS resource, and wait until that resource is in a desired state. The waiter will block until the resource is in the state that is desired, an error occurs, or the waiter times out. If a resource times out the error code returned will be request.WaiterResourceNotReadyErrorCode. This example shows a complete working Go file which will upload a file to S3 and use the Context pattern to implement timeout logic that will cancel the request if it takes too long. This example highlights how to use sessions, create a service client, make a request, handle the error, and process the response.
Package rpcclient implements a websocket-enabled Decred JSON-RPC client. This client provides a robust and easy to use client for interfacing with a Decred RPC server that uses a mostly btcd/bitcoin core style Decred JSON-RPC API. This client has been tested with dcrd (https://github.com/Decred-Next/dcrnd) and dcrwallet (https://github.com/decred/dcrwallet). In addition to the compatible standard HTTP POST JSON-RPC API, dcrd and dcrwallet provide a websocket interface that is more efficient than the standard HTTP POST method of accessing RPC. The section below discusses the differences between HTTP POST and websockets. By default, this client assumes the RPC server supports websockets and has TLS enabled. In practice, this currently means it assumes you are talking to dcrd or dcrwallet by default. However, configuration options are provided to fall back to HTTP POST and disable TLS to support talking with inferior bitcoin core style RPC servers. In HTTP POST-based JSON-RPC, every request creates a new HTTP connection, issues the call, waits for the response, and closes the connection. This adds quite a bit of overhead to every call and lacks flexibility for features such as notifications. In contrast, the websocket-based JSON-RPC interface provided by dcrd and dcrwallet only uses a single connection that remains open and allows asynchronous bi-directional communication. The websocket interface supports all of the same commands as HTTP POST, but they can be invoked without having to go through a connect/disconnect cycle for every call. In addition, the websocket interface provides other nice features such as the ability to register for asynchronous notifications of various events. The client provides both a synchronous (blocking) and asynchronous API. The synchronous (blocking) API is typically sufficient for most use cases. It works by issuing the RPC and blocking until the response is received. This allows straightforward code where you have the response as soon as the function returns. The asynchronous API works on the concept of futures. When you invoke the async version of a command, it will quickly return an instance of a type that promises to provide the result of the RPC at some future time. In the background, the RPC call is issued and the result is stored in the returned instance. Invoking the Receive method on the returned instance will either return the result immediately if it has already arrived, or block until it has. This is useful since it provides the caller with greater control over concurrency. The first important part of notifications is to realize that they will only work when connected via websockets. This should intuitively make sense because HTTP POST mode does not keep a connection open! All notifications provided by dcrd require registration to opt-in. For example, if you want to be notified when funds are received by a set of addresses, you register the addresses via the NotifyReceived (or NotifyReceivedAsync) function. Notifications are exposed by the client through the use of callback handlers which are setup via a NotificationHandlers instance that is specified by the caller when creating the client. It is important that these notification handlers complete quickly since they are intentionally in the main read loop and will block further reads until they complete. This provides the caller with the flexibility to decide what to do when notifications are coming in faster than they are being handled. In particular this means issuing a blocking RPC call from a callback handler will cause a deadlock as more server responses won't be read until the callback returns, but the callback would be waiting for a response. Thus, any additional RPCs must be issued an a completely decoupled manner. By default, when running in websockets mode, this client will automatically keep trying to reconnect to the RPC server should the connection be lost. There is a back-off in between each connection attempt until it reaches one try per minute. Once a connection is re-established, all previously registered notifications are automatically re-registered and any in-flight commands are re-issued. This means from the caller's perspective, the request simply takes longer to complete. The caller may invoke the Shutdown method on the client to force the client to cease reconnect attempts and return ErrClientShutdown for all outstanding commands. The automatic reconnection can be disabled by setting the DisableAutoReconnect flag to true in the connection config when creating the client. Minor RPC Server Differences and Chain/Wallet Separation Some of the commands are extensions specific to a particular RPC server. For example, the DebugLevel call is an extension only provided by dcrd (and dcrwallet passthrough). Therefore if you call one of these commands against an RPC server that doesn't provide them, you will get an unimplemented error from the server. An effort has been made to call out which commands are extensions in their documentation. Also, it is important to realize that dcrd intentionally separates the wallet functionality into a separate process named dcrwallet. This means if you are connected to the dcrd RPC server directly, only the RPCs which are related to chain services will be available. Depending on your application, you might only need chain-related RPCs. In contrast, dcrwallet provides pass through treatment for chain-related RPCs, so it supports them in addition to wallet-related RPCs. There are 3 categories of errors that will be returned throughout this package: The first category of errors are typically one of ErrInvalidAuth, ErrInvalidEndpoint, ErrClientDisconnect, or ErrClientShutdown. NOTE: The ErrClientDisconnect will not be returned unless the DisableAutoReconnect flag is set since the client automatically handles reconnect by default as previously described. The second category of errors typically indicates a programmer error and as such the type can vary, but usually will be best handled by simply showing/logging it. The third category of errors, that is errors returned by the server, can be detected by type asserting the error in a *dcrjson.RPCError. For example, to detect if a command is unimplemented by the remote RPC server: The following full-blown client examples are in the examples directory:
Package dcrrpcclient implements a websocket-enabled Decred JSON-RPC client. This client provides a robust and easy to use client for interfacing with a Decred RPC server that uses a mostly btcd/bitcoin core style Decred JSON-RPC API. This client has been tested with dcrd (https://github.com/decred/dcrd) and dcrwallet (https://github.com/decred/dcrwallet). In addition to the compatible standard HTTP POST JSON-RPC API, dcrd and dcrwallet provide a websocket interface that is more efficient than the standard HTTP POST method of accessing RPC. The section below discusses the differences between HTTP POST and websockets. By default, this client assumes the RPC server supports websockets and has TLS enabled. In practice, this currently means it assumes you are talking to dcrd or dcrwallet by default. However, configuration options are provided to fall back to HTTP POST and disable TLS to support talking with inferior bitcoin core style RPC servers. In HTTP POST-based JSON-RPC, every request creates a new HTTP connection, issues the call, waits for the response, and closes the connection. This adds quite a bit of overhead to every call and lacks flexibility for features such as notifications. In contrast, the websocket-based JSON-RPC interface provided by dcrd and dcrwallet only uses a single connection that remains open and allows asynchronous bi-directional communication. The websocket interface supports all of the same commands as HTTP POST, but they can be invoked without having to go through a connect/disconnect cycle for every call. In addition, the websocket interface provides other nice features such as the ability to register for asynchronous notifications of various events. The client provides both a synchronous (blocking) and asynchronous API. The synchronous (blocking) API is typically sufficient for most use cases. It works by issuing the RPC and blocking until the response is received. This allows straightforward code where you have the response as soon as the function returns. The asynchronous API works on the concept of futures. When you invoke the async version of a command, it will quickly return an instance of a type that promises to provide the result of the RPC at some future time. In the background, the RPC call is issued and the result is stored in the returned instance. Invoking the Receive method on the returned instance will either return the result immediately if it has already arrived, or block until it has. This is useful since it provides the caller with greater control over concurrency. The first important part of notifications is to realize that they will only work when connected via websockets. This should intuitively make sense because HTTP POST mode does not keep a connection open! All notifications provided by dcrd require registration to opt-in. For example, if you want to be notified when funds are received by a set of addresses, you register the addresses via the NotifyReceived (or NotifyReceivedAsync) function. Notifications are exposed by the client through the use of callback handlers which are setup via a NotificationHandlers instance that is specified by the caller when creating the client. It is important that these notification handlers complete quickly since they are intentionally in the main read loop and will block further reads until they complete. This provides the caller with the flexibility to decide what to do when notifications are coming in faster than they are being handled. In particular this means issuing a blocking RPC call from a callback handler will cause a deadlock as more server responses won't be read until the callback returns, but the callback would be waiting for a response. Thus, any additional RPCs must be issued an a completely decoupled manner. By default, when running in websockets mode, this client will automatically keep trying to reconnect to the RPC server should the connection be lost. There is a back-off in between each connection attempt until it reaches one try per minute. Once a connection is re-established, all previously registered notifications are automatically re-registered and any in-flight commands are re-issued. This means from the caller's perspective, the request simply takes longer to complete. The caller may invoke the Shutdown method on the client to force the client to cease reconnect attempts and return ErrClientShutdown for all outstanding commands. The automatic reconnection can be disabled by setting the DisableAutoReconnect flag to true in the connection config when creating the client. Minor RPC Server Differences and Chain/Wallet Separation Some of the commands are extensions specific to a particular RPC server. For example, the DebugLevel call is an extension only provided by dcrd (and dcrwallet passthrough). Therefore if you call one of these commands against an RPC server that doesn't provide them, you will get an unimplemented error from the server. An effort has been made to call out which commmands are extensions in their documentation. Also, it is important to realize that dcrd intentionally separates the wallet functionality into a separate process named dcrwallet. This means if you are connected to the dcrd RPC server directly, only the RPCs which are related to chain services will be available. Depending on your application, you might only need chain-related RPCs. In contrast, dcrwallet provides pass through treatment for chain-related RPCs, so it supports them in addition to wallet-related RPCs. There are 3 categories of errors that will be returned throughout this package: The first category of errors are typically one of ErrInvalidAuth, ErrInvalidEndpoint, ErrClientDisconnect, or ErrClientShutdown. NOTE: The ErrClientDisconnect will not be returned unless the DisableAutoReconnect flag is set since the client automatically handles reconnect by default as previously described. The second category of errors typically indicates a programmer error and as such the type can vary, but usually will be best handled by simply showing/logging it. The third category of errors, that is errors returned by the server, can be detected by type asserting the error in a *dcrjson.RPCError. For example, to detect if a command is unimplemented by the remote RPC server: The following full-blown client examples are in the examples directory:
Package tello provides an unofficial, easy-to-use, standalone API for the Ryze Tello® drone. Tello is a registered trademark of Ryze Tech. The author(s) of this package is/are in no way affiliated with Ryze, DJI, or Intel. The package has been developed by gathering together information from a variety of sources on the Internet (especially the generous contributors at https://tellopilots.com), and by examining data packets sent to/from the Tello. The package will probably be extended as more knowledge of the drone's protocol is obtained. Use this package at your own risk. The author(s) is/are in no way responsible for any damage caused either to or by the drone when using this software. The following features have been implemented... An example application using this package is available at http://github.com/SMerrony/telloterm This documentation should be consulted alongside https://github.com/SMerrony/tello/blob/master/ImplementationChart.md The drone provides two types of connection: a 'control' connection which handles all commands to and from the drone including flight, status and (still) pictures, and a 'video' connection which provides an H.264 video stream from the forward-facing camera. You must establish a control connection to use the drone, but the video connection is optional and cannot be started unless a control connection is running. Funcs vs. Channels Certain functionality is made available in two forms: single-shot function calls and streaming (channel) data flows. Eg. GetFlightData() vs. StreamFlightData(), and UpdateSticks() vs. StartStickListener(). Use whichever paradigm you prefer, but be aware that the channel-based calls should return immediately (the channels are buffered) whereas the function-based options could conceivably cause your application to pause very briefly if the Tello is very busy. (In practice, the author has not found this to be an issue.)
Package rpcclient implements a websocket-enabled Decred JSON-RPC client. This client provides a robust and easy to use client for interfacing with a Decred RPC server that uses a mostly btcd/bitcoin core style Decred JSON-RPC API. This client has been tested with dcrd (https://github.com/Decred-Next/dcrnd) and dcrwallet (https://github.com/decred/dcrwallet). In addition to the compatible standard HTTP POST JSON-RPC API, dcrd and dcrwallet provide a websocket interface that is more efficient than the standard HTTP POST method of accessing RPC. The section below discusses the differences between HTTP POST and websockets. By default, this client assumes the RPC server supports websockets and has TLS enabled. In practice, this currently means it assumes you are talking to dcrd or dcrwallet by default. However, configuration options are provided to fall back to HTTP POST and disable TLS to support talking with inferior bitcoin core style RPC servers. In HTTP POST-based JSON-RPC, every request creates a new HTTP connection, issues the call, waits for the response, and closes the connection. This adds quite a bit of overhead to every call and lacks flexibility for features such as notifications. In contrast, the websocket-based JSON-RPC interface provided by dcrd and dcrwallet only uses a single connection that remains open and allows asynchronous bi-directional communication. The websocket interface supports all of the same commands as HTTP POST, but they can be invoked without having to go through a connect/disconnect cycle for every call. In addition, the websocket interface provides other nice features such as the ability to register for asynchronous notifications of various events. The client provides both a synchronous (blocking) and asynchronous API. The synchronous (blocking) API is typically sufficient for most use cases. It works by issuing the RPC and blocking until the response is received. This allows straightforward code where you have the response as soon as the function returns. The asynchronous API works on the concept of futures. When you invoke the async version of a command, it will quickly return an instance of a type that promises to provide the result of the RPC at some future time. In the background, the RPC call is issued and the result is stored in the returned instance. Invoking the Receive method on the returned instance will either return the result immediately if it has already arrived, or block until it has. This is useful since it provides the caller with greater control over concurrency. The first important part of notifications is to realize that they will only work when connected via websockets. This should intuitively make sense because HTTP POST mode does not keep a connection open! All notifications provided by dcrd require registration to opt-in. For example, if you want to be notified when funds are received by a set of addresses, you register the addresses via the NotifyReceived (or NotifyReceivedAsync) function. Notifications are exposed by the client through the use of callback handlers which are setup via a NotificationHandlers instance that is specified by the caller when creating the client. It is important that these notification handlers complete quickly since they are intentionally in the main read loop and will block further reads until they complete. This provides the caller with the flexibility to decide what to do when notifications are coming in faster than they are being handled. In particular this means issuing a blocking RPC call from a callback handler will cause a deadlock as more server responses won't be read until the callback returns, but the callback would be waiting for a response. Thus, any additional RPCs must be issued an a completely decoupled manner. By default, when running in websockets mode, this client will automatically keep trying to reconnect to the RPC server should the connection be lost. There is a back-off in between each connection attempt until it reaches one try per minute. Once a connection is re-established, all previously registered notifications are automatically re-registered and any in-flight commands are re-issued. This means from the caller's perspective, the request simply takes longer to complete. The caller may invoke the Shutdown method on the client to force the client to cease reconnect attempts and return ErrClientShutdown for all outstanding commands. The automatic reconnection can be disabled by setting the DisableAutoReconnect flag to true in the connection config when creating the client. Minor RPC Server Differences and Chain/Wallet Separation Some of the commands are extensions specific to a particular RPC server. For example, the DebugLevel call is an extension only provided by dcrd (and dcrwallet passthrough). Therefore if you call one of these commands against an RPC server that doesn't provide them, you will get an unimplemented error from the server. An effort has been made to call out which commands are extensions in their documentation. Also, it is important to realize that dcrd intentionally separates the wallet functionality into a separate process named dcrwallet. This means if you are connected to the dcrd RPC server directly, only the RPCs which are related to chain services will be available. Depending on your application, you might only need chain-related RPCs. In contrast, dcrwallet provides pass through treatment for chain-related RPCs, so it supports them in addition to wallet-related RPCs. There are 3 categories of errors that will be returned throughout this package: The first category of errors are typically one of ErrInvalidAuth, ErrInvalidEndpoint, ErrClientDisconnect, or ErrClientShutdown. NOTE: The ErrClientDisconnect will not be returned unless the DisableAutoReconnect flag is set since the client automatically handles reconnect by default as previously described. The second category of errors typically indicates a programmer error and as such the type can vary, but usually will be best handled by simply showing/logging it. The third category of errors, that is errors returned by the server, can be detected by type asserting the error in a *dcrjson.RPCError. For example, to detect if a command is unimplemented by the remote RPC server: The following full-blown client examples are in the examples directory:
Package sdk is the official AWS SDK for the Go programming language. The AWS SDK for Go provides APIs and utilities that developers can use to build Go applications that use AWS services, such as Amazon Elastic Compute Cloud (Amazon EC2) and Amazon Simple Storage Service (Amazon S3). The SDK removes the complexity of coding directly against a web service interface. It hides a lot of the lower-level plumbing, such as authentication, request retries, and error handling. The SDK also includes helpful utilities on top of the AWS APIs that add additional capabilities and functionality. For example, the Amazon S3 Download and Upload Manager will automatically split up large objects into multiple parts and transfer them concurrently. See the s3manager package documentation for more information. https://docs.aws.amazon.com/sdk-for-go/api/service/s3/s3manager/ Checkout the Getting Started Guide and API Reference Docs detailed the SDK's components and details on each AWS client the SDK supports. The Getting Started Guide provides examples and detailed description of how to get setup with the SDK. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/welcome.html The API Reference Docs include a detailed breakdown of the SDK's components such as utilities and AWS clients. Use this as a reference of the Go types included with the SDK, such as AWS clients, API operations, and API parameters. https://docs.aws.amazon.com/sdk-for-go/api/ The SDK is composed of two main components, SDK core, and service clients. The SDK core packages are all available under the aws package at the root of the SDK. Each client for a supported AWS service is available within its own package under the service folder at the root of the SDK. aws - SDK core, provides common shared types such as Config, Logger, and utilities to make working with API parameters easier. awserr - Provides the error interface that the SDK will use for all errors that occur in the SDK's processing. This includes service API response errors as well. The Error type is made up of a code and message. Cast the SDK's returned error type to awserr.Error and call the Code method to compare returned error to specific error codes. See the package's documentation for additional values that can be extracted such as RequestId. credentials - Provides the types and built in credentials providers the SDK will use to retrieve AWS credentials to make API requests with. Nested under this folder are also additional credentials providers such as stscreds for assuming IAM roles, and ec2rolecreds for EC2 Instance roles. endpoints - Provides the AWS Regions and Endpoints metadata for the SDK. Use this to lookup AWS service endpoint information such as which services are in a region, and what regions a service is in. Constants are also provided for all region identifiers, e.g UsWest2RegionID for "us-west-2". session - Provides initial default configuration, and load configuration from external sources such as environment and shared credentials file. request - Provides the API request sending, and retry logic for the SDK. This package also includes utilities for defining your own request retryer, and configuring how the SDK processes the request. service - Clients for AWS services. All services supported by the SDK are available under this folder. The SDK includes the Go types and utilities you can use to make requests to AWS service APIs. Within the service folder at the root of the SDK you'll find a package for each AWS service the SDK supports. All service clients follows a common pattern of creation and usage. When creating a client for an AWS service you'll first need to have a Session value constructed. The Session provides shared configuration that can be shared between your service clients. When service clients are created you can pass in additional configuration via the aws.Config type to override configuration provided by in the Session to create service client instances with custom configuration. Once the service's client is created you can use it to make API requests the AWS service. These clients are safe to use concurrently. In the AWS SDK for Go, you can configure settings for service clients, such as the log level and maximum number of retries. Most settings are optional; however, for each service client, you must specify a region and your credentials. The SDK uses these values to send requests to the correct AWS region and sign requests with the correct credentials. You can specify these values as part of a session or as environment variables. See the SDK's configuration guide for more information. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html See the session package documentation for more information on how to use Session with the SDK. https://docs.aws.amazon.com/sdk-for-go/api/aws/session/ See the Config type in the aws package for more information on configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config When using the SDK you'll generally need your AWS credentials to authenticate with AWS services. The SDK supports multiple methods of supporting these credentials. By default the SDK will source credentials automatically from its default credential chain. See the session package for more information on this chain, and how to configure it. The common items in the credential chain are the following: Environment Credentials - Set of environment variables that are useful when sub processes are created for specific roles. Shared Credentials file (~/.aws/credentials) - This file stores your credentials based on a profile name and is useful for local development. EC2 Instance Role Credentials - Use EC2 Instance Role to assign credentials to application running on an EC2 instance. This removes the need to manage credential files in production. Credentials can be configured in code as well by setting the Config's Credentials value to a custom provider or using one of the providers included with the SDK to bypass the default credential chain and use a custom one. This is helpful when you want to instruct the SDK to only use a specific set of credentials or providers. This example creates a credential provider for assuming an IAM role, "myRoleARN" and configures the S3 service client to use that role for API requests. See the credentials package documentation for more information on credential providers included with the SDK, and how to customize the SDK's usage of credentials. https://docs.aws.amazon.com/sdk-for-go/api/aws/credentials The SDK has support for the shared configuration file (~/.aws/config). This support can be enabled by setting the environment variable, "AWS_SDK_LOAD_CONFIG=1", or enabling the feature in code when creating a Session via the Option's SharedConfigState parameter. In addition to the credentials you'll need to specify the region the SDK will use to make AWS API requests to. In the SDK you can specify the region either with an environment variable, or directly in code when a Session or service client is created. The last value specified in code wins if the region is specified multiple ways. To set the region via the environment variable set the "AWS_REGION" to the region you want to the SDK to use. Using this method to set the region will allow you to run your application in multiple regions without needing additional code in the application to select the region. The endpoints package includes constants for all regions the SDK knows. The values are all suffixed with RegionID. These values are helpful, because they reduce the need to type the region string manually. To set the region on a Session use the aws package's Config struct parameter Region to the AWS region you want the service clients created from the session to use. This is helpful when you want to create multiple service clients, and all of the clients make API requests to the same region. See the endpoints package for the AWS Regions and Endpoints metadata. https://docs.aws.amazon.com/sdk-for-go/api/aws/endpoints/ In addition to setting the region when creating a Session you can also set the region on a per service client bases. This overrides the region of a Session. This is helpful when you want to create service clients in specific regions different from the Session's region. See the Config type in the aws package for more information and additional options such as setting the Endpoint, and other service client configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config Once the client is created you can make an API request to the service. Each API method takes a input parameter, and returns the service response and an error. The SDK provides methods for making the API call in multiple ways. In this list we'll use the S3 ListObjects API as an example for the different ways of making API requests. ListObjects - Base API operation that will make the API request to the service. ListObjectsRequest - API methods suffixed with Request will construct the API request, but not send it. This is also helpful when you want to get a presigned URL for a request, and share the presigned URL instead of your application making the request directly. ListObjectsPages - Same as the base API operation, but uses a callback to automatically handle pagination of the API's response. ListObjectsWithContext - Same as base API operation, but adds support for the Context pattern. This is helpful for controlling the canceling of in flight requests. See the Go standard library context package for more information. This method also takes request package's Option functional options as the variadic argument for modifying how the request will be made, or extracting information from the raw HTTP response. ListObjectsPagesWithContext - same as ListObjectsPages, but adds support for the Context pattern. Similar to ListObjectsWithContext this method also takes the request package's Option function option types as the variadic argument. In addition to the API operations the SDK also includes several higher level methods that abstract checking for and waiting for an AWS resource to be in a desired state. In this list we'll use WaitUntilBucketExists to demonstrate the different forms of waiters. WaitUntilBucketExists. - Method to make API request to query an AWS service for a resource's state. Will return successfully when that state is accomplished. WaitUntilBucketExistsWithContext - Same as WaitUntilBucketExists, but adds support for the Context pattern. In addition these methods take request package's WaiterOptions to configure the waiter, and how underlying request will be made by the SDK. The API method will document which error codes the service might return for the operation. These errors will also be available as const strings prefixed with "ErrCode" in the service client's package. If there are no errors listed in the API's SDK documentation you'll need to consult the AWS service's API documentation for the errors that could be returned. Pagination helper methods are suffixed with "Pages", and provide the functionality needed to round trip API page requests. Pagination methods take a callback function that will be called for each page of the API's response. Waiter helper methods provide the functionality to wait for an AWS resource state. These methods abstract the logic needed to to check the state of an AWS resource, and wait until that resource is in a desired state. The waiter will block until the resource is in the state that is desired, an error occurs, or the waiter times out. If a resource times out the error code returned will be request.WaiterResourceNotReadyErrorCode. This example shows a complete working Go file which will upload a file to S3 and use the Context pattern to implement timeout logic that will cancel the request if it takes too long. This example highlights how to use sessions, create a service client, make a request, handle the error, and process the response.
Package sdk is the official AWS SDK for the Go programming language. The AWS SDK for Go provides APIs and utilities that developers can use to build Go applications that use AWS services, such as Amazon Elastic Compute Cloud (Amazon EC2) and Amazon Simple Storage Service (Amazon S3). The SDK removes the complexity of coding directly against a web service interface. It hides a lot of the lower-level plumbing, such as authentication, request retries, and error handling. The SDK also includes helpful utilities on top of the AWS APIs that add additional capabilities and functionality. For example, the Amazon S3 Download and Upload Manager will automatically split up large objects into multiple parts and transfer them concurrently. See the s3manager package documentation for more information. https://docs.aws.amazon.com/sdk-for-go/api/service/s3/s3manager/ Checkout the Getting Started Guide and API Reference Docs detailed the SDK's components and details on each AWS client the SDK supports. The Getting Started Guide provides examples and detailed description of how to get setup with the SDK. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/welcome.html The API Reference Docs include a detailed breakdown of the SDK's components such as utilities and AWS clients. Use this as a reference of the Go types included with the SDK, such as AWS clients, API operations, and API parameters. https://docs.aws.amazon.com/sdk-for-go/api/ The SDK is composed of two main components, SDK core, and service clients. The SDK core packages are all available under the aws package at the root of the SDK. Each client for a supported AWS service is available within its own package under the service folder at the root of the SDK. aws - SDK core, provides common shared types such as Config, Logger, and utilities to make working with API parameters easier. awserr - Provides the error interface that the SDK will use for all errors that occur in the SDK's processing. This includes service API response errors as well. The Error type is made up of a code and message. Cast the SDK's returned error type to awserr.Error and call the Code method to compare returned error to specific error codes. See the package's documentation for additional values that can be extracted such as RequestId. credentials - Provides the types and built in credentials providers the SDK will use to retrieve AWS credentials to make API requests with. Nested under this folder are also additional credentials providers such as stscreds for assuming IAM roles, and ec2rolecreds for EC2 Instance roles. endpoints - Provides the AWS Regions and Endpoints metadata for the SDK. Use this to lookup AWS service endpoint information such as which services are in a region, and what regions a service is in. Constants are also provided for all region identifiers, e.g UsWest2RegionID for "us-west-2". session - Provides initial default configuration, and load configuration from external sources such as environment and shared credentials file. request - Provides the API request sending, and retry logic for the SDK. This package also includes utilities for defining your own request retryer, and configuring how the SDK processes the request. service - Clients for AWS services. All services supported by the SDK are available under this folder. The SDK includes the Go types and utilities you can use to make requests to AWS service APIs. Within the service folder at the root of the SDK you'll find a package for each AWS service the SDK supports. All service clients follows a common pattern of creation and usage. When creating a client for an AWS service you'll first need to have a Session value constructed. The Session provides shared configuration that can be shared between your service clients. When service clients are created you can pass in additional configuration via the nifcloud.Config type to override configuration provided by in the Session to create service client instances with custom configuration. Once the service's client is created you can use it to make API requests the AWS service. These clients are safe to use concurrently. In the AWS SDK for Go, you can configure settings for service clients, such as the log level and maximum number of retries. Most settings are optional; however, for each service client, you must specify a region and your credentials. The SDK uses these values to send requests to the correct AWS region and sign requests with the correct credentials. You can specify these values as part of a session or as environment variables. See the SDK's configuration guide for more information. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html See the session package documentation for more information on how to use Session with the SDK. https://docs.aws.amazon.com/sdk-for-go/api/nifcloud/session/ See the Config type in the aws package for more information on configuration options. https://docs.aws.amazon.com/sdk-for-go/api/nifcloud/#Config When using the SDK you'll generally need your AWS credentials to authenticate with AWS services. The SDK supports multiple methods of supporting these credentials. By default the SDK will source credentials automatically from its default credential chain. See the session package for more information on this chain, and how to configure it. The common items in the credential chain are the following: Environment Credentials - Set of environment variables that are useful when sub processes are created for specific roles. Shared Credentials file (~/.nifcloud/credentials) - This file stores your credentials based on a profile name and is useful for local development. EC2 Instance Role Credentials - Use EC2 Instance Role to assign credentials to application running on an EC2 instance. This removes the need to manage credential files in production. Credentials can be configured in code as well by setting the Config's Credentials value to a custom provider or using one of the providers included with the SDK to bypass the default credential chain and use a custom one. This is helpful when you want to instruct the SDK to only use a specific set of credentials or providers. This example creates a credential provider for assuming an IAM role, "myRoleARN" and configures the S3 service client to use that role for API requests. See the credentials package documentation for more information on credential providers included with the SDK, and how to customize the SDK's usage of credentials. https://docs.aws.amazon.com/sdk-for-go/api/nifcloud/credentials The SDK has support for the shared configuration file (~/.nifcloud/config). This support can be enabled by setting the environment variable, "AWS_SDK_LOAD_CONFIG=1", or enabling the feature in code when creating a Session via the Option's SharedConfigState parameter. In addition to the credentials you'll need to specify the region the SDK will use to make AWS API requests to. In the SDK you can specify the region either with an environment variable, or directly in code when a Session or service client is created. The last value specified in code wins if the region is specified multiple ways. To set the region via the environment variable set the "AWS_REGION" to the region you want to the SDK to use. Using this method to set the region will allow you to run your application in multiple regions without needing additional code in the application to select the region. The endpoints package includes constants for all regions the SDK knows. The values are all suffixed with RegionID. These values are helpful, because they reduce the need to type the region string manually. To set the region on a Session use the aws package's Config struct parameter Region to the AWS region you want the service clients created from the session to use. This is helpful when you want to create multiple service clients, and all of the clients make API requests to the same region. See the endpoints package for the AWS Regions and Endpoints metadata. https://docs.aws.amazon.com/sdk-for-go/api/nifcloud/endpoints/ In addition to setting the region when creating a Session you can also set the region on a per service client bases. This overrides the region of a Session. This is helpful when you want to create service clients in specific regions different from the Session's region. See the Config type in the aws package for more information and additional options such as setting the Endpoint, and other service client configuration options. https://docs.aws.amazon.com/sdk-for-go/api/nifcloud/#Config Once the client is created you can make an API request to the service. Each API method takes a input parameter, and returns the service response and an error. The SDK provides methods for making the API call in multiple ways. In this list we'll use the S3 ListObjects API as an example for the different ways of making API requests. ListObjects - Base API operation that will make the API request to the service. ListObjectsRequest - API methods suffixed with Request will construct the API request, but not send it. This is also helpful when you want to get a presigned URL for a request, and share the presigned URL instead of your application making the request directly. ListObjectsPages - Same as the base API operation, but uses a callback to automatically handle pagination of the API's response. ListObjectsWithContext - Same as base API operation, but adds support for the Context pattern. This is helpful for controlling the canceling of in flight requests. See the Go standard library context package for more information. This method also takes request package's Option functional options as the variadic argument for modifying how the request will be made, or extracting information from the raw HTTP response. ListObjectsPagesWithContext - same as ListObjectsPages, but adds support for the Context pattern. Similar to ListObjectsWithContext this method also takes the request package's Option function option types as the variadic argument. In addition to the API operations the SDK also includes several higher level methods that abstract checking for and waiting for an AWS resource to be in a desired state. In this list we'll use WaitUntilBucketExists to demonstrate the different forms of waiters. WaitUntilBucketExists. - Method to make API request to query an AWS service for a resource's state. Will return successfully when that state is accomplished. WaitUntilBucketExistsWithContext - Same as WaitUntilBucketExists, but adds support for the Context pattern. In addition these methods take request package's WaiterOptions to configure the waiter, and how underlying request will be made by the SDK. The API method will document which error codes the service might return for the operation. These errors will also be available as const strings prefixed with "ErrCode" in the service client's package. If there are no errors listed in the API's SDK documentation you'll need to consult the AWS service's API documentation for the errors that could be returned. Pagination helper methods are suffixed with "Pages", and provide the functionality needed to round trip API page requests. Pagination methods take a callback function that will be called for each page of the API's response. Waiter helper methods provide the functionality to wait for an AWS resource state. These methods abstract the logic needed to to check the state of an AWS resource, and wait until that resource is in a desired state. The waiter will block until the resource is in the state that is desired, an error occurs, or the waiter times out. If a resource times out the error code returned will be request.WaiterResourceNotReadyErrorCode. This example shows a complete working Go file which will upload a file to S3 and use the Context pattern to implement timeout logic that will cancel the request if it takes too long. This example highlights how to use sessions, create a service client, make a request, handle the error, and process the response.
Package sdk is the official AWS SDK for the Go programming language. The AWS SDK for Go provides APIs and utilities that developers can use to build Go applications that use AWS services, such as Amazon Elastic Compute Cloud (Amazon EC2) and Amazon Simple Storage Service (Amazon S3). The SDK removes the complexity of coding directly against a web service interface. It hides a lot of the lower-level plumbing, such as authentication, request retries, and error handling. The SDK also includes helpful utilities on top of the AWS APIs that add additional capabilities and functionality. For example, the Amazon S3 Download and Upload Manager will automatically split up large objects into multiple parts and transfer them concurrently. See the s3manager package documentation for more information. https://docs.aws.amazon.com/sdk-for-go/api/service/s3/s3manager/ Checkout the Getting Started Guide and API Reference Docs detailed the SDK's components and details on each AWS client the SDK supports. The Getting Started Guide provides examples and detailed description of how to get setup with the SDK. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/welcome.html The API Reference Docs include a detailed breakdown of the SDK's components such as utilities and AWS clients. Use this as a reference of the Go types included with the SDK, such as AWS clients, API operations, and API parameters. https://docs.aws.amazon.com/sdk-for-go/api/ The SDK is composed of two main components, SDK core, and service clients. The SDK core packages are all available under the aws package at the root of the SDK. Each client for a supported AWS service is available within its own package under the service folder at the root of the SDK. aws - SDK core, provides common shared types such as Config, Logger, and utilities to make working with API parameters easier. awserr - Provides the error interface that the SDK will use for all errors that occur in the SDK's processing. This includes service API response errors as well. The Error type is made up of a code and message. Cast the SDK's returned error type to awserr.Error and call the Code method to compare returned error to specific error codes. See the package's documentation for additional values that can be extracted such as RequestId. credentials - Provides the types and built in credentials providers the SDK will use to retrieve AWS credentials to make API requests with. Nested under this folder are also additional credentials providers such as stscreds for assuming IAM roles, and ec2rolecreds for EC2 Instance roles. endpoints - Provides the AWS Regions and Endpoints metadata for the SDK. Use this to lookup AWS service endpoint information such as which services are in a region, and what regions a service is in. Constants are also provided for all region identifiers, e.g UsWest2RegionID for "us-west-2". session - Provides initial default configuration, and load configuration from external sources such as environment and shared credentials file. request - Provides the API request sending, and retry logic for the SDK. This package also includes utilities for defining your own request retryer, and configuring how the SDK processes the request. service - Clients for AWS services. All services supported by the SDK are available under this folder. The SDK includes the Go types and utilities you can use to make requests to AWS service APIs. Within the service folder at the root of the SDK you'll find a package for each AWS service the SDK supports. All service clients follows a common pattern of creation and usage. When creating a client for an AWS service you'll first need to have a Session value constructed. The Session provides shared configuration that can be shared between your service clients. When service clients are created you can pass in additional configuration via the nifcloud.Config type to override configuration provided by in the Session to create service client instances with custom configuration. Once the service's client is created you can use it to make API requests the AWS service. These clients are safe to use concurrently. In the AWS SDK for Go, you can configure settings for service clients, such as the log level and maximum number of retries. Most settings are optional; however, for each service client, you must specify a region and your credentials. The SDK uses these values to send requests to the correct AWS region and sign requests with the correct credentials. You can specify these values as part of a session or as environment variables. See the SDK's configuration guide for more information. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html See the session package documentation for more information on how to use Session with the SDK. https://docs.aws.amazon.com/sdk-for-go/api/nifcloud/session/ See the Config type in the aws package for more information on configuration options. https://docs.aws.amazon.com/sdk-for-go/api/nifcloud/#Config When using the SDK you'll generally need your AWS credentials to authenticate with AWS services. The SDK supports multiple methods of supporting these credentials. By default the SDK will source credentials automatically from its default credential chain. See the session package for more information on this chain, and how to configure it. The common items in the credential chain are the following: Environment Credentials - Set of environment variables that are useful when sub processes are created for specific roles. Shared Credentials file (~/.nifcloud/credentials) - This file stores your credentials based on a profile name and is useful for local development. EC2 Instance Role Credentials - Use EC2 Instance Role to assign credentials to application running on an EC2 instance. This removes the need to manage credential files in production. Credentials can be configured in code as well by setting the Config's Credentials value to a custom provider or using one of the providers included with the SDK to bypass the default credential chain and use a custom one. This is helpful when you want to instruct the SDK to only use a specific set of credentials or providers. This example creates a credential provider for assuming an IAM role, "myRoleARN" and configures the S3 service client to use that role for API requests. See the credentials package documentation for more information on credential providers included with the SDK, and how to customize the SDK's usage of credentials. https://docs.aws.amazon.com/sdk-for-go/api/nifcloud/credentials The SDK has support for the shared configuration file (~/.nifcloud/config). This support can be enabled by setting the environment variable, "AWS_SDK_LOAD_CONFIG=1", or enabling the feature in code when creating a Session via the Option's SharedConfigState parameter. In addition to the credentials you'll need to specify the region the SDK will use to make AWS API requests to. In the SDK you can specify the region either with an environment variable, or directly in code when a Session or service client is created. The last value specified in code wins if the region is specified multiple ways. To set the region via the environment variable set the "AWS_REGION" to the region you want to the SDK to use. Using this method to set the region will allow you to run your application in multiple regions without needing additional code in the application to select the region. The endpoints package includes constants for all regions the SDK knows. The values are all suffixed with RegionID. These values are helpful, because they reduce the need to type the region string manually. To set the region on a Session use the aws package's Config struct parameter Region to the AWS region you want the service clients created from the session to use. This is helpful when you want to create multiple service clients, and all of the clients make API requests to the same region. See the endpoints package for the AWS Regions and Endpoints metadata. https://docs.aws.amazon.com/sdk-for-go/api/nifcloud/endpoints/ In addition to setting the region when creating a Session you can also set the region on a per service client bases. This overrides the region of a Session. This is helpful when you want to create service clients in specific regions different from the Session's region. See the Config type in the aws package for more information and additional options such as setting the Endpoint, and other service client configuration options. https://docs.aws.amazon.com/sdk-for-go/api/nifcloud/#Config Once the client is created you can make an API request to the service. Each API method takes a input parameter, and returns the service response and an error. The SDK provides methods for making the API call in multiple ways. In this list we'll use the S3 ListObjects API as an example for the different ways of making API requests. ListObjects - Base API operation that will make the API request to the service. ListObjectsRequest - API methods suffixed with Request will construct the API request, but not send it. This is also helpful when you want to get a presigned URL for a request, and share the presigned URL instead of your application making the request directly. ListObjectsPages - Same as the base API operation, but uses a callback to automatically handle pagination of the API's response. ListObjectsWithContext - Same as base API operation, but adds support for the Context pattern. This is helpful for controlling the canceling of in flight requests. See the Go standard library context package for more information. This method also takes request package's Option functional options as the variadic argument for modifying how the request will be made, or extracting information from the raw HTTP response. ListObjectsPagesWithContext - same as ListObjectsPages, but adds support for the Context pattern. Similar to ListObjectsWithContext this method also takes the request package's Option function option types as the variadic argument. In addition to the API operations the SDK also includes several higher level methods that abstract checking for and waiting for an AWS resource to be in a desired state. In this list we'll use WaitUntilBucketExists to demonstrate the different forms of waiters. WaitUntilBucketExists. - Method to make API request to query an AWS service for a resource's state. Will return successfully when that state is accomplished. WaitUntilBucketExistsWithContext - Same as WaitUntilBucketExists, but adds support for the Context pattern. In addition these methods take request package's WaiterOptions to configure the waiter, and how underlying request will be made by the SDK. The API method will document which error codes the service might return for the operation. These errors will also be available as const strings prefixed with "ErrCode" in the service client's package. If there are no errors listed in the API's SDK documentation you'll need to consult the AWS service's API documentation for the errors that could be returned. Pagination helper methods are suffixed with "Pages", and provide the functionality needed to round trip API page requests. Pagination methods take a callback function that will be called for each page of the API's response. Waiter helper methods provide the functionality to wait for an AWS resource state. These methods abstract the logic needed to to check the state of an AWS resource, and wait until that resource is in a desired state. The waiter will block until the resource is in the state that is desired, an error occurs, or the waiter times out. If a resource times out the error code returned will be request.WaiterResourceNotReadyErrorCode. This example shows a complete working Go file which will upload a file to S3 and use the Context pattern to implement timeout logic that will cancel the request if it takes too long. This example highlights how to use sessions, create a service client, make a request, handle the error, and process the response.
Package xhr provides GopherJS bindings for the XMLHttpRequest API. This package provides two ways of using XHR directly. The first one is via the Request type and the NewRequest function. This way, one can specify all desired details of the request's behaviour (timeout, response format). It also allows access to response details such as the status code. Furthermore, using this way is required if one wants to abort in-flight requests or if one wants to register additional event listeners. The other way is via the package function Send, which is a helper that internally constructs a Request and assigns sane defaults to it. It's the easiest way of doing an XHR request that should just return unprocessed data. If you don't need to/want to deal with the underlying details of XHR, you may also just use the net/http.DefaultTransport, which GopherJS replaces with an XHR-enabled version, making this package useless most of the time.
Package rpcclient implements a websocket-enabled Decred JSON-RPC client. This client provides a robust and easy to use client for interfacing with a Decred RPC server that uses a mostly btcd/bitcoin core style Decred JSON-RPC API. This client has been tested with dcrd (https://github.com/EXCCoin/exccd) and dcrwallet (https://github.com/decred/dcrwallet). In addition to the compatible standard HTTP POST JSON-RPC API, dcrd and dcrwallet provide a websocket interface that is more efficient than the standard HTTP POST method of accessing RPC. The section below discusses the differences between HTTP POST and websockets. By default, this client assumes the RPC server supports websockets and has TLS enabled. In practice, this currently means it assumes you are talking to dcrd or dcrwallet by default. However, configuration options are provided to fall back to HTTP POST and disable TLS to support talking with inferior bitcoin core style RPC servers. In HTTP POST-based JSON-RPC, every request creates a new HTTP connection, issues the call, waits for the response, and closes the connection. This adds quite a bit of overhead to every call and lacks flexibility for features such as notifications. In contrast, the websocket-based JSON-RPC interface provided by dcrd and dcrwallet only uses a single connection that remains open and allows asynchronous bi-directional communication. The websocket interface supports all of the same commands as HTTP POST, but they can be invoked without having to go through a connect/disconnect cycle for every call. In addition, the websocket interface provides other nice features such as the ability to register for asynchronous notifications of various events. The client provides both a synchronous (blocking) and asynchronous API. The synchronous (blocking) API is typically sufficient for most use cases. It works by issuing the RPC and blocking until the response is received. This allows straightforward code where you have the response as soon as the function returns. The asynchronous API works on the concept of futures. When you invoke the async version of a command, it will quickly return an instance of a type that promises to provide the result of the RPC at some future time. In the background, the RPC call is issued and the result is stored in the returned instance. Invoking the Receive method on the returned instance will either return the result immediately if it has already arrived, or block until it has. This is useful since it provides the caller with greater control over concurrency. The first important part of notifications is to realize that they will only work when connected via websockets. This should intuitively make sense because HTTP POST mode does not keep a connection open! All notifications provided by dcrd require registration to opt-in. For example, if you want to be notified when funds are received by a set of addresses, you register the addresses via the NotifyReceived (or NotifyReceivedAsync) function. Notifications are exposed by the client through the use of callback handlers which are setup via a NotificationHandlers instance that is specified by the caller when creating the client. It is important that these notification handlers complete quickly since they are intentionally in the main read loop and will block further reads until they complete. This provides the caller with the flexibility to decide what to do when notifications are coming in faster than they are being handled. In particular this means issuing a blocking RPC call from a callback handler will cause a deadlock as more server responses won't be read until the callback returns, but the callback would be waiting for a response. Thus, any additional RPCs must be issued an a completely decoupled manner. By default, when running in websockets mode, this client will automatically keep trying to reconnect to the RPC server should the connection be lost. There is a back-off in between each connection attempt until it reaches one try per minute. Once a connection is re-established, all previously registered notifications are automatically re-registered and any in-flight commands are re-issued. This means from the caller's perspective, the request simply takes longer to complete. The caller may invoke the Shutdown method on the client to force the client to cease reconnect attempts and return ErrClientShutdown for all outstanding commands. The automatic reconnection can be disabled by setting the DisableAutoReconnect flag to true in the connection config when creating the client. This package only provides methods for dcrd RPCs. Using the websocket connection and request-response mapping provided by rpcclient with arbitrary methods or different servers is possible through the generic RawRequest and RawRequestAsync methods (each of which deal with json.RawMessage for parameters and return results). Previous versions of this package provided methods for dcrwallet's JSON-RPC server in addition to dcrd. These were removed in major version 6 of this module. Projects depending on these calls are advised to use the decred.org/dcrwallet/rpc/client/dcrwallet package which is able to wrap rpcclient.Client using the aforementioned RawRequest method: Using struct embedding, it is possible to create a single variable with the combined method sets of both rpcclient.Client and dcrwallet.Client: This technique is valuable as dcrwallet (syncing in RPC mode) will passthrough any unknown RPCs to the backing dcrd server, proxying requests and responses for the client. There are 3 categories of errors that will be returned throughout this package: The first category of errors are typically one of ErrInvalidAuth, ErrInvalidEndpoint, ErrClientDisconnect, or ErrClientShutdown. NOTE: The ErrClientDisconnect will not be returned unless the DisableAutoReconnect flag is set since the client automatically handles reconnect by default as previously described. The second category of errors typically indicates a programmer error and as such the type can vary, but usually will be best handled by simply showing/logging it. The third category of errors, that is errors returned by the server, can be detected by type asserting the error in a *dcrjson.RPCError. For example, to detect if a command is unimplemented by the remote RPC server: The following full-blown client examples are in the examples directory:
Package rpcclient implements a websocket-enabled Decred JSON-RPC client. This client provides a robust and easy to use client for interfacing with a Decred RPC server that uses a mostly btcd/bitcoin core style Decred JSON-RPC API. This client has been tested with dcrd (https://github.com/decred/dcrd) and dcrwallet (https://github.com/decred/dcrwallet). In addition to the compatible standard HTTP POST JSON-RPC API, dcrd and dcrwallet provide a websocket interface that is more efficient than the standard HTTP POST method of accessing RPC. The section below discusses the differences between HTTP POST and websockets. By default, this client assumes the RPC server supports websockets and has TLS enabled. In practice, this currently means it assumes you are talking to dcrd or dcrwallet by default. However, configuration options are provided to fall back to HTTP POST and disable TLS to support talking with inferior bitcoin core style RPC servers. In HTTP POST-based JSON-RPC, every request creates a new HTTP connection, issues the call, waits for the response, and closes the connection. This adds quite a bit of overhead to every call and lacks flexibility for features such as notifications. In contrast, the websocket-based JSON-RPC interface provided by dcrd and dcrwallet only uses a single connection that remains open and allows asynchronous bi-directional communication. The websocket interface supports all of the same commands as HTTP POST, but they can be invoked without having to go through a connect/disconnect cycle for every call. In addition, the websocket interface provides other nice features such as the ability to register for asynchronous notifications of various events. The client provides both a synchronous (blocking) and asynchronous API. The synchronous (blocking) API is typically sufficient for most use cases. It works by issuing the RPC and blocking until the response is received. This allows straightforward code where you have the response as soon as the function returns. The asynchronous API works on the concept of futures. When you invoke the async version of a command, it will quickly return an instance of a type that promises to provide the result of the RPC at some future time. In the background, the RPC call is issued and the result is stored in the returned instance. Invoking the Receive method on the returned instance will either return the result immediately if it has already arrived, or block until it has. This is useful since it provides the caller with greater control over concurrency. The first important part of notifications is to realize that they will only work when connected via websockets. This should intuitively make sense because HTTP POST mode does not keep a connection open! All notifications provided by dcrd require registration to opt-in. For example, if you want to be notified when funds are received by a set of addresses, you register the addresses via the NotifyReceived (or NotifyReceivedAsync) function. Notifications are exposed by the client through the use of callback handlers which are setup via a NotificationHandlers instance that is specified by the caller when creating the client. It is important that these notification handlers complete quickly since they are intentionally in the main read loop and will block further reads until they complete. This provides the caller with the flexibility to decide what to do when notifications are coming in faster than they are being handled. In particular this means issuing a blocking RPC call from a callback handler will cause a deadlock as more server responses won't be read until the callback returns, but the callback would be waiting for a response. Thus, any additional RPCs must be issued an a completely decoupled manner. By default, when running in websockets mode, this client will automatically keep trying to reconnect to the RPC server should the connection be lost. There is a back-off in between each connection attempt until it reaches one try per minute. Once a connection is re-established, all previously registered notifications are automatically re-registered and any in-flight commands are re-issued. This means from the caller's perspective, the request simply takes longer to complete. The caller may invoke the Shutdown method on the client to force the client to cease reconnect attempts and return ErrClientShutdown for all outstanding commands. The automatic reconnection can be disabled by setting the DisableAutoReconnect flag to true in the connection config when creating the client. Minor RPC Server Differences and Chain/Wallet Separation Some of the commands are extensions specific to a particular RPC server. For example, the DebugLevel call is an extension only provided by dcrd (and dcrwallet passthrough). Therefore if you call one of these commands against an RPC server that doesn't provide them, you will get an unimplemented error from the server. An effort has been made to call out which commmands are extensions in their documentation. Also, it is important to realize that dcrd intentionally separates the wallet functionality into a separate process named dcrwallet. This means if you are connected to the dcrd RPC server directly, only the RPCs which are related to chain services will be available. Depending on your application, you might only need chain-related RPCs. In contrast, dcrwallet provides pass through treatment for chain-related RPCs, so it supports them in addition to wallet-related RPCs. There are 3 categories of errors that will be returned throughout this package: The first category of errors are typically one of ErrInvalidAuth, ErrInvalidEndpoint, ErrClientDisconnect, or ErrClientShutdown. NOTE: The ErrClientDisconnect will not be returned unless the DisableAutoReconnect flag is set since the client automatically handles reconnect by default as previously described. The second category of errors typically indicates a programmer error and as such the type can vary, but usually will be best handled by simply showing/logging it. The third category of errors, that is errors returned by the server, can be detected by type asserting the error in a *dcrjson.RPCError. For example, to detect if a command is unimplemented by the remote RPC server: The following full-blown client examples are in the examples directory:
Package rpcclient implements a websocket-enabled Decred JSON-RPC client. This client provides a robust and easy to use client for interfacing with a Decred RPC server that uses a mostly btcd/bitcoin core style Decred JSON-RPC API. This client has been tested with dcrd (https://github.com/decred/dcrd) and dcrwallet (https://github.com/decred/dcrwallet). In addition to the compatible standard HTTP POST JSON-RPC API, dcrd and dcrwallet provide a websocket interface that is more efficient than the standard HTTP POST method of accessing RPC. The section below discusses the differences between HTTP POST and websockets. By default, this client assumes the RPC server supports websockets and has TLS enabled. In practice, this currently means it assumes you are talking to dcrd or dcrwallet by default. However, configuration options are provided to fall back to HTTP POST and disable TLS to support talking with inferior bitcoin core style RPC servers. In HTTP POST-based JSON-RPC, every request creates a new HTTP connection, issues the call, waits for the response, and closes the connection. This adds quite a bit of overhead to every call and lacks flexibility for features such as notifications. In contrast, the websocket-based JSON-RPC interface provided by dcrd and dcrwallet only uses a single connection that remains open and allows asynchronous bi-directional communication. The websocket interface supports all of the same commands as HTTP POST, but they can be invoked without having to go through a connect/disconnect cycle for every call. In addition, the websocket interface provides other nice features such as the ability to register for asynchronous notifications of various events. The client provides both a synchronous (blocking) and asynchronous API. The synchronous (blocking) API is typically sufficient for most use cases. It works by issuing the RPC and blocking until the response is received. This allows straightforward code where you have the response as soon as the function returns. The asynchronous API works on the concept of futures. When you invoke the async version of a command, it will quickly return an instance of a type that promises to provide the result of the RPC at some future time. In the background, the RPC call is issued and the result is stored in the returned instance. Invoking the Receive method on the returned instance will either return the result immediately if it has already arrived, or block until it has. This is useful since it provides the caller with greater control over concurrency. The first important part of notifications is to realize that they will only work when connected via websockets. This should intuitively make sense because HTTP POST mode does not keep a connection open! All notifications provided by dcrd require registration to opt-in. For example, if you want to be notified when funds are received by a set of addresses, you register the addresses via the NotifyReceived (or NotifyReceivedAsync) function. Notifications are exposed by the client through the use of callback handlers which are setup via a NotificationHandlers instance that is specified by the caller when creating the client. It is important that these notification handlers complete quickly since they are intentionally in the main read loop and will block further reads until they complete. This provides the caller with the flexibility to decide what to do when notifications are coming in faster than they are being handled. In particular this means issuing a blocking RPC call from a callback handler will cause a deadlock as more server responses won't be read until the callback returns, but the callback would be waiting for a response. Thus, any additional RPCs must be issued an a completely decoupled manner. By default, when running in websockets mode, this client will automatically keep trying to reconnect to the RPC server should the connection be lost. There is a back-off in between each connection attempt until it reaches one try per minute. Once a connection is re-established, all previously registered notifications are automatically re-registered and any in-flight commands are re-issued. This means from the caller's perspective, the request simply takes longer to complete. The caller may invoke the Shutdown method on the client to force the client to cease reconnect attempts and return ErrClientShutdown for all outstanding commands. The automatic reconnection can be disabled by setting the DisableAutoReconnect flag to true in the connection config when creating the client. Minor RPC Server Differences and Chain/Wallet Separation Some of the commands are extensions specific to a particular RPC server. For example, the DebugLevel call is an extension only provided by dcrd (and dcrwallet passthrough). Therefore if you call one of these commands against an RPC server that doesn't provide them, you will get an unimplemented error from the server. An effort has been made to call out which commmands are extensions in their documentation. Also, it is important to realize that dcrd intentionally separates the wallet functionality into a separate process named dcrwallet. This means if you are connected to the dcrd RPC server directly, only the RPCs which are related to chain services will be available. Depending on your application, you might only need chain-related RPCs. In contrast, dcrwallet provides pass through treatment for chain-related RPCs, so it supports them in addition to wallet-related RPCs. There are 3 categories of errors that will be returned throughout this package: The first category of errors are typically one of ErrInvalidAuth, ErrInvalidEndpoint, ErrClientDisconnect, or ErrClientShutdown. NOTE: The ErrClientDisconnect will not be returned unless the DisableAutoReconnect flag is set since the client automatically handles reconnect by default as previously described. The second category of errors typically indicates a programmer error and as such the type can vary, but usually will be best handled by simply showing/logging it. The third category of errors, that is errors returned by the server, can be detected by type asserting the error in a *dcrjson.RPCError. For example, to detect if a command is unimplemented by the remote RPC server: The following full-blown client examples are in the examples directory:
Package rpcclient implements a websocket-enabled Decred JSON-RPC client. This client provides a robust and easy to use client for interfacing with a Decred RPC server that uses a mostly btcd/bitcoin core style Decred JSON-RPC API. This client has been tested with dcrd (https://github.com/John-Tonny/vclsuite_vcld) and dcrwallet (https://github.com/decred/dcrwallet). In addition to the compatible standard HTTP POST JSON-RPC API, dcrd and dcrwallet provide a websocket interface that is more efficient than the standard HTTP POST method of accessing RPC. The section below discusses the differences between HTTP POST and websockets. By default, this client assumes the RPC server supports websockets and has TLS enabled. In practice, this currently means it assumes you are talking to dcrd or dcrwallet by default. However, configuration options are provided to fall back to HTTP POST and disable TLS to support talking with inferior bitcoin core style RPC servers. In HTTP POST-based JSON-RPC, every request creates a new HTTP connection, issues the call, waits for the response, and closes the connection. This adds quite a bit of overhead to every call and lacks flexibility for features such as notifications. In contrast, the websocket-based JSON-RPC interface provided by dcrd and dcrwallet only uses a single connection that remains open and allows asynchronous bi-directional communication. The websocket interface supports all of the same commands as HTTP POST, but they can be invoked without having to go through a connect/disconnect cycle for every call. In addition, the websocket interface provides other nice features such as the ability to register for asynchronous notifications of various events. The client provides both a synchronous (blocking) and asynchronous API. The synchronous (blocking) API is typically sufficient for most use cases. It works by issuing the RPC and blocking until the response is received. This allows straightforward code where you have the response as soon as the function returns. The asynchronous API works on the concept of futures. When you invoke the async version of a command, it will quickly return an instance of a type that promises to provide the result of the RPC at some future time. In the background, the RPC call is issued and the result is stored in the returned instance. Invoking the Receive method on the returned instance will either return the result immediately if it has already arrived, or block until it has. This is useful since it provides the caller with greater control over concurrency. The first important part of notifications is to realize that they will only work when connected via websockets. This should intuitively make sense because HTTP POST mode does not keep a connection open! All notifications provided by dcrd require registration to opt-in. For example, if you want to be notified when funds are received by a set of addresses, you register the addresses via the NotifyReceived (or NotifyReceivedAsync) function. Notifications are exposed by the client through the use of callback handlers which are setup via a NotificationHandlers instance that is specified by the caller when creating the client. It is important that these notification handlers complete quickly since they are intentionally in the main read loop and will block further reads until they complete. This provides the caller with the flexibility to decide what to do when notifications are coming in faster than they are being handled. In particular this means issuing a blocking RPC call from a callback handler will cause a deadlock as more server responses won't be read until the callback returns, but the callback would be waiting for a response. Thus, any additional RPCs must be issued an a completely decoupled manner. By default, when running in websockets mode, this client will automatically keep trying to reconnect to the RPC server should the connection be lost. There is a back-off in between each connection attempt until it reaches one try per minute. Once a connection is re-established, all previously registered notifications are automatically re-registered and any in-flight commands are re-issued. This means from the caller's perspective, the request simply takes longer to complete. The caller may invoke the Shutdown method on the client to force the client to cease reconnect attempts and return ErrClientShutdown for all outstanding commands. The automatic reconnection can be disabled by setting the DisableAutoReconnect flag to true in the connection config when creating the client. This package only provides methods for dcrd RPCs. Using the websocket connection and request-response mapping provided by rpcclient with arbitrary methods or different servers is possible through the generic RawRequest and RawRequestAsync methods (each of which deal with json.RawMessage for parameters and return results). Previous versions of this package provided methods for dcrwallet's JSON-RPC server in addition to dcrd. These were removed in major version 6 of this module. Projects depending on these calls are advised to use the decred.org/dcrwallet/rpc/client/dcrwallet package which is able to wrap rpcclient.Client using the aforementioned RawRequest method: Using struct embedding, it is possible to create a single variable with the combined method sets of both rpcclient.Client and dcrwallet.Client: This technique is valuable as dcrwallet (syncing in RPC mode) will passthrough any unknown RPCs to the backing dcrd server, proxying requests and responses for the client. There are 3 categories of errors that will be returned throughout this package: The first category of errors are typically one of ErrInvalidAuth, ErrInvalidEndpoint, ErrClientDisconnect, or ErrClientShutdown. NOTE: The ErrClientDisconnect will not be returned unless the DisableAutoReconnect flag is set since the client automatically handles reconnect by default as previously described. The second category of errors typically indicates a programmer error and as such the type can vary, but usually will be best handled by simply showing/logging it. The third category of errors, that is errors returned by the server, can be detected by type asserting the error in a *vcljson.RPCError. For example, to detect if a command is unimplemented by the remote RPC server: The following full-blown client examples are in the examples directory:
Package sdk is the official AWS SDK for the Go programming language. The AWS SDK for Go provides APIs and utilities that developers can use to build Go applications that use AWS services, such as Amazon Elastic Compute Cloud (Amazon EC2) and Amazon Simple Storage Service (Amazon S3). The SDK removes the complexity of coding directly against a web service interface. It hides a lot of the lower-level plumbing, such as authentication, request retries, and error handling. The SDK also includes helpful utilities on top of the AWS APIs that add additional capabilities and functionality. For example, the Amazon S3 Download and Upload Manager will automatically split up large objects into multiple parts and transfer them concurrently. See the s3manager package documentation for more information. https://docs.aws.amazon.com/sdk-for-go/api/service/s3/s3manager/ Checkout the Getting Started Guide and API Reference Docs detailed the SDK's components and details on each AWS client the SDK supports. The Getting Started Guide provides examples and detailed description of how to get setup with the SDK. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/welcome.html The API Reference Docs include a detailed breakdown of the SDK's components such as utilities and AWS clients. Use this as a reference of the Go types included with the SDK, such as AWS clients, API operations, and API parameters. https://docs.aws.amazon.com/sdk-for-go/api/ The SDK is composed of two main components, SDK core, and service clients. The SDK core packages are all available under the aws package at the root of the SDK. Each client for a supported AWS service is available within its own package under the service folder at the root of the SDK. aws - SDK core, provides common shared types such as Config, Logger, and utilities to make working with API parameters easier. awserr - Provides the error interface that the SDK will use for all errors that occur in the SDK's processing. This includes service API response errors as well. The Error type is made up of a code and message. Cast the SDK's returned error type to awserr.Error and call the Code method to compare returned error to specific error codes. See the package's documentation for additional values that can be extracted such as RequestId. credentials - Provides the types and built in credentials providers the SDK will use to retrieve AWS credentials to make API requests with. Nested under this folder are also additional credentials providers such as stscreds for assuming IAM roles, and ec2rolecreds for EC2 Instance roles. endpoints - Provides the AWS Regions and Endpoints metadata for the SDK. Use this to lookup AWS service endpoint information such as which services are in a region, and what regions a service is in. Constants are also provided for all region identifiers, e.g UsWest2RegionID for "us-west-2". session - Provides initial default configuration, and load configuration from external sources such as environment and shared credentials file. request - Provides the API request sending, and retry logic for the SDK. This package also includes utilities for defining your own request retryer, and configuring how the SDK processes the request. service - Clients for AWS services. All services supported by the SDK are available under this folder. The SDK includes the Go types and utilities you can use to make requests to AWS service APIs. Within the service folder at the root of the SDK you'll find a package for each AWS service the SDK supports. All service clients follows a common pattern of creation and usage. When creating a client for an AWS service you'll first need to have a Session value constructed. The Session provides shared configuration that can be shared between your service clients. When service clients are created you can pass in additional configuration via the aws.Config type to override configuration provided by in the Session to create service client instances with custom configuration. Once the service's client is created you can use it to make API requests the AWS service. These clients are safe to use concurrently. In the AWS SDK for Go, you can configure settings for service clients, such as the log level and maximum number of retries. Most settings are optional; however, for each service client, you must specify a region and your credentials. The SDK uses these values to send requests to the correct AWS region and sign requests with the correct credentials. You can specify these values as part of a session or as environment variables. See the SDK's configuration guide for more information. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html See the session package documentation for more information on how to use Session with the SDK. https://docs.aws.amazon.com/sdk-for-go/api/aws/session/ See the Config type in the aws package for more information on configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config When using the SDK you'll generally need your AWS credentials to authenticate with AWS services. The SDK supports multiple methods of supporting these credentials. By default the SDK will source credentials automatically from its default credential chain. See the session package for more information on this chain, and how to configure it. The common items in the credential chain are the following: Environment Credentials - Set of environment variables that are useful when sub processes are created for specific roles. Shared Credentials file (~/.aws/credentials) - This file stores your credentials based on a profile name and is useful for local development. EC2 Instance Role Credentials - Use EC2 Instance Role to assign credentials to application running on an EC2 instance. This removes the need to manage credential files in production. Credentials can be configured in code as well by setting the Config's Credentials value to a custom provider or using one of the providers included with the SDK to bypass the default credential chain and use a custom one. This is helpful when you want to instruct the SDK to only use a specific set of credentials or providers. This example creates a credential provider for assuming an IAM role, "myRoleARN" and configures the S3 service client to use that role for API requests. See the credentials package documentation for more information on credential providers included with the SDK, and how to customize the SDK's usage of credentials. https://docs.aws.amazon.com/sdk-for-go/api/aws/credentials The SDK has support for the shared configuration file (~/.aws/config). This support can be enabled by setting the environment variable, "AWS_SDK_LOAD_CONFIG=1", or enabling the feature in code when creating a Session via the Option's SharedConfigState parameter. In addition to the credentials you'll need to specify the region the SDK will use to make AWS API requests to. In the SDK you can specify the region either with an environment variable, or directly in code when a Session or service client is created. The last value specified in code wins if the region is specified multiple ways. To set the region via the environment variable set the "AWS_REGION" to the region you want to the SDK to use. Using this method to set the region will allow you to run your application in multiple regions without needing additional code in the application to select the region. The endpoints package includes constants for all regions the SDK knows. The values are all suffixed with RegionID. These values are helpful, because they reduce the need to type the region string manually. To set the region on a Session use the aws package's Config struct parameter Region to the AWS region you want the service clients created from the session to use. This is helpful when you want to create multiple service clients, and all of the clients make API requests to the same region. See the endpoints package for the AWS Regions and Endpoints metadata. https://docs.aws.amazon.com/sdk-for-go/api/aws/endpoints/ In addition to setting the region when creating a Session you can also set the region on a per service client bases. This overrides the region of a Session. This is helpful when you want to create service clients in specific regions different from the Session's region. See the Config type in the aws package for more information and additional options such as setting the Endpoint, and other service client configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config Once the client is created you can make an API request to the service. Each API method takes a input parameter, and returns the service response and an error. The SDK provides methods for making the API call in multiple ways. In this list we'll use the S3 ListObjects API as an example for the different ways of making API requests. ListObjects - Base API operation that will make the API request to the service. ListObjectsRequest - API methods suffixed with Request will construct the API request, but not send it. This is also helpful when you want to get a presigned URL for a request, and share the presigned URL instead of your application making the request directly. ListObjectsPages - Same as the base API operation, but uses a callback to automatically handle pagination of the API's response. ListObjectsWithContext - Same as base API operation, but adds support for the Context pattern. This is helpful for controlling the canceling of in flight requests. See the Go standard library context package for more information. This method also takes request package's Option functional options as the variadic argument for modifying how the request will be made, or extracting information from the raw HTTP response. ListObjectsPagesWithContext - same as ListObjectsPages, but adds support for the Context pattern. Similar to ListObjectsWithContext this method also takes the request package's Option function option types as the variadic argument. In addition to the API operations the SDK also includes several higher level methods that abstract checking for and waiting for an AWS resource to be in a desired state. In this list we'll use WaitUntilBucketExists to demonstrate the different forms of waiters. WaitUntilBucketExists. - Method to make API request to query an AWS service for a resource's state. Will return successfully when that state is accomplished. WaitUntilBucketExistsWithContext - Same as WaitUntilBucketExists, but adds support for the Context pattern. In addition these methods take request package's WaiterOptions to configure the waiter, and how underlying request will be made by the SDK. The API method will document which error codes the service might return for the operation. These errors will also be available as const strings prefixed with "ErrCode" in the service client's package. If there are no errors listed in the API's SDK documentation you'll need to consult the AWS service's API documentation for the errors that could be returned. Pagination helper methods are suffixed with "Pages", and provide the functionality needed to round trip API page requests. Pagination methods take a callback function that will be called for each page of the API's response. Waiter helper methods provide the functionality to wait for an AWS resource state. These methods abstract the logic needed to to check the state of an AWS resource, and wait until that resource is in a desired state. The waiter will block until the resource is in the state that is desired, an error occurs, or the waiter times out. If a resource times out the error code returned will be request.WaiterResourceNotReadyErrorCode. This example shows a complete working Go file which will upload a file to S3 and use the Context pattern to implement timeout logic that will cancel the request if it takes too long. This example highlights how to use sessions, create a service client, make a request, handle the error, and process the response.
Package sdk is the official AWS SDK for the Go programming language. The AWS SDK for Go provides APIs and utilities that developers can use to build Go applications that use AWS services, such as Amazon Elastic Compute Cloud (Amazon EC2) and Amazon Simple Storage Service (Amazon S3). The SDK removes the complexity of coding directly against a web service interface. It hides a lot of the lower-level plumbing, such as authentication, request retries, and error handling. The SDK also includes helpful utilities on top of the AWS APIs that add additional capabilities and functionality. For example, the Amazon S3 Download and Upload Manager will automatically split up large objects into multiple parts and transfer them concurrently. See the s3manager package documentation for more information. https://docs.aws.amazon.com/sdk-for-go/api/service/s3/s3manager/ Checkout the Getting Started Guide and API Reference Docs detailed the SDK's components and details on each AWS client the SDK supports. The Getting Started Guide provides examples and detailed description of how to get setup with the SDK. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/welcome.html The API Reference Docs include a detailed breakdown of the SDK's components such as utilities and AWS clients. Use this as a reference of the Go types included with the SDK, such as AWS clients, API operations, and API parameters. https://docs.aws.amazon.com/sdk-for-go/api/ The SDK is composed of two main components, SDK core, and service clients. The SDK core packages are all available under the aws package at the root of the SDK. Each client for a supported AWS service is available within its own package under the service folder at the root of the SDK. aws - SDK core, provides common shared types such as Config, Logger, and utilities to make working with API parameters easier. awserr - Provides the error interface that the SDK will use for all errors that occur in the SDK's processing. This includes service API response errors as well. The Error type is made up of a code and message. Cast the SDK's returned error type to awserr.Error and call the Code method to compare returned error to specific error codes. See the package's documentation for additional values that can be extracted such as RequestId. credentials - Provides the types and built in credentials providers the SDK will use to retrieve AWS credentials to make API requests with. Nested under this folder are also additional credentials providers such as stscreds for assuming IAM roles, and ec2rolecreds for EC2 Instance roles. endpoints - Provides the AWS Regions and Endpoints metadata for the SDK. Use this to lookup AWS service endpoint information such as which services are in a region, and what regions a service is in. Constants are also provided for all region identifiers, e.g UsWest2RegionID for "us-west-2". session - Provides initial default configuration, and load configuration from external sources such as environment and shared credentials file. request - Provides the API request sending, and retry logic for the SDK. This package also includes utilities for defining your own request retryer, and configuring how the SDK processes the request. service - Clients for AWS services. All services supported by the SDK are available under this folder. The SDK includes the Go types and utilities you can use to make requests to AWS service APIs. Within the service folder at the root of the SDK you'll find a package for each AWS service the SDK supports. All service clients follows a common pattern of creation and usage. When creating a client for an AWS service you'll first need to have a Session value constructed. The Session provides shared configuration that can be shared between your service clients. When service clients are created you can pass in additional configuration via the aws.Config type to override configuration provided by in the Session to create service client instances with custom configuration. Once the service's client is created you can use it to make API requests the AWS service. These clients are safe to use concurrently. In the AWS SDK for Go, you can configure settings for service clients, such as the log level and maximum number of retries. Most settings are optional; however, for each service client, you must specify a region and your credentials. The SDK uses these values to send requests to the correct AWS region and sign requests with the correct credentials. You can specify these values as part of a session or as environment variables. See the SDK's configuration guide for more information. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html See the session package documentation for more information on how to use Session with the SDK. https://docs.aws.amazon.com/sdk-for-go/api/aws/session/ See the Config type in the aws package for more information on configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config When using the SDK you'll generally need your AWS credentials to authenticate with AWS services. The SDK supports multiple methods of supporting these credentials. By default the SDK will source credentials automatically from its default credential chain. See the session package for more information on this chain, and how to configure it. The common items in the credential chain are the following: Environment Credentials - Set of environment variables that are useful when sub processes are created for specific roles. Shared Credentials file (~/.aws/credentials) - This file stores your credentials based on a profile name and is useful for local development. EC2 Instance Role Credentials - Use EC2 Instance Role to assign credentials to application running on an EC2 instance. This removes the need to manage credential files in production. Credentials can be configured in code as well by setting the Config's Credentials value to a custom provider or using one of the providers included with the SDK to bypass the default credential chain and use a custom one. This is helpful when you want to instruct the SDK to only use a specific set of credentials or providers. This example creates a credential provider for assuming an IAM role, "myRoleARN" and configures the S3 service client to use that role for API requests. See the credentials package documentation for more information on credential providers included with the SDK, and how to customize the SDK's usage of credentials. https://docs.aws.amazon.com/sdk-for-go/api/aws/credentials The SDK has support for the shared configuration file (~/.aws/config). This support can be enabled by setting the environment variable, "AWS_SDK_LOAD_CONFIG=1", or enabling the feature in code when creating a Session via the Option's SharedConfigState parameter. In addition to the credentials you'll need to specify the region the SDK will use to make AWS API requests to. In the SDK you can specify the region either with an environment variable, or directly in code when a Session or service client is created. The last value specified in code wins if the region is specified multiple ways. To set the region via the environment variable set the "AWS_REGION" to the region you want to the SDK to use. Using this method to set the region will allow you to run your application in multiple regions without needing additional code in the application to select the region. The endpoints package includes constants for all regions the SDK knows. The values are all suffixed with RegionID. These values are helpful, because they reduce the need to type the region string manually. To set the region on a Session use the aws package's Config struct parameter Region to the AWS region you want the service clients created from the session to use. This is helpful when you want to create multiple service clients, and all of the clients make API requests to the same region. See the endpoints package for the AWS Regions and Endpoints metadata. https://docs.aws.amazon.com/sdk-for-go/api/aws/endpoints/ In addition to setting the region when creating a Session you can also set the region on a per service client bases. This overrides the region of a Session. This is helpful when you want to create service clients in specific regions different from the Session's region. See the Config type in the aws package for more information and additional options such as setting the Endpoint, and other service client configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config Once the client is created you can make an API request to the service. Each API method takes a input parameter, and returns the service response and an error. The SDK provides methods for making the API call in multiple ways. In this list we'll use the S3 ListObjects API as an example for the different ways of making API requests. ListObjects - Base API operation that will make the API request to the service. ListObjectsRequest - API methods suffixed with Request will construct the API request, but not send it. This is also helpful when you want to get a presigned URL for a request, and share the presigned URL instead of your application making the request directly. ListObjectsPages - Same as the base API operation, but uses a callback to automatically handle pagination of the API's response. ListObjectsWithContext - Same as base API operation, but adds support for the Context pattern. This is helpful for controlling the canceling of in flight requests. See the Go standard library context package for more information. This method also takes request package's Option functional options as the variadic argument for modifying how the request will be made, or extracting information from the raw HTTP response. ListObjectsPagesWithContext - same as ListObjectsPages, but adds support for the Context pattern. Similar to ListObjectsWithContext this method also takes the request package's Option function option types as the variadic argument. In addition to the API operations the SDK also includes several higher level methods that abstract checking for and waiting for an AWS resource to be in a desired state. In this list we'll use WaitUntilBucketExists to demonstrate the different forms of waiters. WaitUntilBucketExists. - Method to make API request to query an AWS service for a resource's state. Will return successfully when that state is accomplished. WaitUntilBucketExistsWithContext - Same as WaitUntilBucketExists, but adds support for the Context pattern. In addition these methods take request package's WaiterOptions to configure the waiter, and how underlying request will be made by the SDK. The API method will document which error codes the service might return for the operation. These errors will also be available as const strings prefixed with "ErrCode" in the service client's package. If there are no errors listed in the API's SDK documentation you'll need to consult the AWS service's API documentation for the errors that could be returned. Pagination helper methods are suffixed with "Pages", and provide the functionality needed to round trip API page requests. Pagination methods take a callback function that will be called for each page of the API's response. Waiter helper methods provide the functionality to wait for an AWS resource state. These methods abstract the logic needed to to check the state of an AWS resource, and wait until that resource is in a desired state. The waiter will block until the resource is in the state that is desired, an error occurs, or the waiter times out. If a resource times out the error code returned will be request.WaiterResourceNotReadyErrorCode. This example shows a complete working Go file which will upload a file to S3 and use the Context pattern to implement timeout logic that will cancel the request if it takes too long. This example highlights how to use sessions, create a service client, make a request, handle the error, and process the response.
Package sdk is the official AWS SDK for the Go programming language. The AWS SDK for Go provides APIs and utilities that developers can use to build Go applications that use AWS services, such as Amazon Elastic Compute Cloud (Amazon EC2) and Amazon Simple Storage Service (Amazon S3). The SDK removes the complexity of coding directly against a web service interface. It hides a lot of the lower-level plumbing, such as authentication, request retries, and error handling. The SDK also includes helpful utilities on top of the AWS APIs that add additional capabilities and functionality. For example, the Amazon S3 Download and Upload Manager will automatically split up large objects into multiple parts and transfer them concurrently. See the s3manager package documentation for more information. https://docs.aws.amazon.com/sdk-for-go/api/service/s3/s3manager/ Checkout the Getting Started Guide and API Reference Docs detailed the SDK's components and details on each AWS client the SDK supports. The Getting Started Guide provides examples and detailed description of how to get setup with the SDK. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/welcome.html The API Reference Docs include a detailed breakdown of the SDK's components such as utilities and AWS clients. Use this as a reference of the Go types included with the SDK, such as AWS clients, API operations, and API parameters. https://docs.aws.amazon.com/sdk-for-go/api/ The SDK is composed of two main components, SDK core, and service clients. The SDK core packages are all available under the aws package at the root of the SDK. Each client for a supported AWS service is available within its own package under the service folder at the root of the SDK. aws - SDK core, provides common shared types such as Config, Logger, and utilities to make working with API parameters easier. awserr - Provides the error interface that the SDK will use for all errors that occur in the SDK's processing. This includes service API response errors as well. The Error type is made up of a code and message. Cast the SDK's returned error type to awserr.Error and call the Code method to compare returned error to specific error codes. See the package's documentation for additional values that can be extracted such as RequestId. credentials - Provides the types and built in credentials providers the SDK will use to retrieve AWS credentials to make API requests with. Nested under this folder are also additional credentials providers such as stscreds for assuming IAM roles, and ec2rolecreds for EC2 Instance roles. endpoints - Provides the AWS Regions and Endpoints metadata for the SDK. Use this to lookup AWS service endpoint information such as which services are in a region, and what regions a service is in. Constants are also provided for all region identifiers, e.g UsWest2RegionID for "us-west-2". session - Provides initial default configuration, and load configuration from external sources such as environment and shared credentials file. request - Provides the API request sending, and retry logic for the SDK. This package also includes utilities for defining your own request retryer, and configuring how the SDK processes the request. service - Clients for AWS services. All services supported by the SDK are available under this folder. The SDK includes the Go types and utilities you can use to make requests to AWS service APIs. Within the service folder at the root of the SDK you'll find a package for each AWS service the SDK supports. All service clients follows a common pattern of creation and usage. When creating a client for an AWS service you'll first need to have a Session value constructed. The Session provides shared configuration that can be shared between your service clients. When service clients are created you can pass in additional configuration via the aws.Config type to override configuration provided by in the Session to create service client instances with custom configuration. Once the service's client is created you can use it to make API requests the AWS service. These clients are safe to use concurrently. In the AWS SDK for Go, you can configure settings for service clients, such as the log level and maximum number of retries. Most settings are optional; however, for each service client, you must specify a region and your credentials. The SDK uses these values to send requests to the correct AWS region and sign requests with the correct credentials. You can specify these values as part of a session or as environment variables. See the SDK's configuration guide for more information. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html See the session package documentation for more information on how to use Session with the SDK. https://docs.aws.amazon.com/sdk-for-go/api/aws/session/ See the Config type in the aws package for more information on configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config When using the SDK you'll generally need your AWS credentials to authenticate with AWS services. The SDK supports multiple methods of supporting these credentials. By default the SDK will source credentials automatically from its default credential chain. See the session package for more information on this chain, and how to configure it. The common items in the credential chain are the following: Environment Credentials - Set of environment variables that are useful when sub processes are created for specific roles. Shared Credentials file (~/.aws/credentials) - This file stores your credentials based on a profile name and is useful for local development. EC2 Instance Role Credentials - Use EC2 Instance Role to assign credentials to application running on an EC2 instance. This removes the need to manage credential files in production. Credentials can be configured in code as well by setting the Config's Credentials value to a custom provider or using one of the providers included with the SDK to bypass the default credential chain and use a custom one. This is helpful when you want to instruct the SDK to only use a specific set of credentials or providers. This example creates a credential provider for assuming an IAM role, "myRoleARN" and configures the S3 service client to use that role for API requests. See the credentials package documentation for more information on credential providers included with the SDK, and how to customize the SDK's usage of credentials. https://docs.aws.amazon.com/sdk-for-go/api/aws/credentials The SDK has support for the shared configuration file (~/.aws/config). This support can be enabled by setting the environment variable, "AWS_SDK_LOAD_CONFIG=1", or enabling the feature in code when creating a Session via the Option's SharedConfigState parameter. In addition to the credentials you'll need to specify the region the SDK will use to make AWS API requests to. In the SDK you can specify the region either with an environment variable, or directly in code when a Session or service client is created. The last value specified in code wins if the region is specified multiple ways. To set the region via the environment variable set the "AWS_REGION" to the region you want to the SDK to use. Using this method to set the region will allow you to run your application in multiple regions without needing additional code in the application to select the region. The endpoints package includes constants for all regions the SDK knows. The values are all suffixed with RegionID. These values are helpful, because they reduce the need to type the region string manually. To set the region on a Session use the aws package's Config struct parameter Region to the AWS region you want the service clients created from the session to use. This is helpful when you want to create multiple service clients, and all of the clients make API requests to the same region. See the endpoints package for the AWS Regions and Endpoints metadata. https://docs.aws.amazon.com/sdk-for-go/api/aws/endpoints/ In addition to setting the region when creating a Session you can also set the region on a per service client bases. This overrides the region of a Session. This is helpful when you want to create service clients in specific regions different from the Session's region. See the Config type in the aws package for more information and additional options such as setting the Endpoint, and other service client configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config Once the client is created you can make an API request to the service. Each API method takes a input parameter, and returns the service response and an error. The SDK provides methods for making the API call in multiple ways. In this list we'll use the S3 ListObjects API as an example for the different ways of making API requests. ListObjects - Base API operation that will make the API request to the service. ListObjectsRequest - API methods suffixed with Request will construct the API request, but not send it. This is also helpful when you want to get a presigned URL for a request, and share the presigned URL instead of your application making the request directly. ListObjectsPages - Same as the base API operation, but uses a callback to automatically handle pagination of the API's response. ListObjectsWithContext - Same as base API operation, but adds support for the Context pattern. This is helpful for controlling the canceling of in flight requests. See the Go standard library context package for more information. This method also takes request package's Option functional options as the variadic argument for modifying how the request will be made, or extracting information from the raw HTTP response. ListObjectsPagesWithContext - same as ListObjectsPages, but adds support for the Context pattern. Similar to ListObjectsWithContext this method also takes the request package's Option function option types as the variadic argument. In addition to the API operations the SDK also includes several higher level methods that abstract checking for and waiting for an AWS resource to be in a desired state. In this list we'll use WaitUntilBucketExists to demonstrate the different forms of waiters. WaitUntilBucketExists. - Method to make API request to query an AWS service for a resource's state. Will return successfully when that state is accomplished. WaitUntilBucketExistsWithContext - Same as WaitUntilBucketExists, but adds support for the Context pattern. In addition these methods take request package's WaiterOptions to configure the waiter, and how underlying request will be made by the SDK. The API method will document which error codes the service might return for the operation. These errors will also be available as const strings prefixed with "ErrCode" in the service client's package. If there are no errors listed in the API's SDK documentation you'll need to consult the AWS service's API documentation for the errors that could be returned. Pagination helper methods are suffixed with "Pages", and provide the functionality needed to round trip API page requests. Pagination methods take a callback function that will be called for each page of the API's response. Waiter helper methods provide the functionality to wait for an AWS resource state. These methods abstract the logic needed to to check the state of an AWS resource, and wait until that resource is in a desired state. The waiter will block until the resource is in the state that is desired, an error occurs, or the waiter times out. If a resource times out the error code returned will be request.WaiterResourceNotReadyErrorCode. This example shows a complete working Go file which will upload a file to S3 and use the Context pattern to implement timeout logic that will cancel the request if it takes too long. This example highlights how to use sessions, create a service client, make a request, handle the error, and process the response.
Package rpcclient implements a websocket-enabled Brocoin JSON-RPC client. This client provides a robust and easy to use client for interfacing with a Brocoin RPC server that uses a brond/brocoin core compatible Brocoin JSON-RPC API. This client has been tested with brond (https://github.com/brsuite/brond), bronwallet (https://github.com/brsuite/bronwallet), and brocoin core (https://github.com/brocoin). In addition to the compatible standard HTTP POST JSON-RPC API, brond and bronwallet provide a websocket interface that is more efficient than the standard HTTP POST method of accessing RPC. The section below discusses the differences between HTTP POST and websockets. By default, this client assumes the RPC server supports websockets and has TLS enabled. In practice, this currently means it assumes you are talking to brond or bronwallet by default. However, configuration options are provided to fall back to HTTP POST and disable TLS to support talking with inferior brocoin core style RPC servers. In HTTP POST-based JSON-RPC, every request creates a new HTTP connection, issues the call, waits for the response, and closes the connection. This adds quite a bit of overhead to every call and lacks flexibility for features such as notifications. In contrast, the websocket-based JSON-RPC interface provided by brond and bronwallet only uses a single connection that remains open and allows asynchronous bi-directional communication. The websocket interface supports all of the same commands as HTTP POST, but they can be invoked without having to go through a connect/disconnect cycle for every call. In addition, the websocket interface provides other nice features such as the ability to register for asynchronous notifications of various events. The client provides both a synchronous (blocking) and asynchronous API. The synchronous (blocking) API is typically sufficient for most use cases. It works by issuing the RPC and blocking until the response is received. This allows straightforward code where you have the response as soon as the function returns. The asynchronous API works on the concept of futures. When you invoke the async version of a command, it will quickly return an instance of a type that promises to provide the result of the RPC at some future time. In the background, the RPC call is issued and the result is stored in the returned instance. Invoking the Receive method on the returned instance will either return the result immediately if it has already arrived, or block until it has. This is useful since it provides the caller with greater control over concurrency. The first important part of notifications is to realize that they will only work when connected via websockets. This should intuitively make sense because HTTP POST mode does not keep a connection open! All notifications provided by brond require registration to opt-in. For example, if you want to be notified when funds are received by a set of addresses, you register the addresses via the NotifyReceived (or NotifyReceivedAsync) function. Notifications are exposed by the client through the use of callback handlers which are setup via a NotificationHandlers instance that is specified by the caller when creating the client. It is important that these notification handlers complete quickly since they are intentionally in the main read loop and will block further reads until they complete. This provides the caller with the flexibility to decide what to do when notifications are coming in faster than they are being handled. In particular this means issuing a blocking RPC call from a callback handler will cause a deadlock as more server responses won't be read until the callback returns, but the callback would be waiting for a response. Thus, any additional RPCs must be issued an a completely decoupled manner. By default, when running in websockets mode, this client will automatically keep trying to reconnect to the RPC server should the connection be lost. There is a back-off in between each connection attempt until it reaches one try per minute. Once a connection is re-established, all previously registered notifications are automatically re-registered and any in-flight commands are re-issued. This means from the caller's perspective, the request simply takes longer to complete. The caller may invoke the Shutdown method on the client to force the client to cease reconnect attempts and return ErrClientShutdown for all outstanding commands. The automatic reconnection can be disabled by setting the DisableAutoReconnect flag to true in the connection config when creating the client. Minor RPC Server Differences and Chain/Wallet Separation Some of the commands are extensions specific to a particular RPC server. For example, the DebugLevel call is an extension only provided by brond (and bronwallet passthrough). Therefore if you call one of these commands against an RPC server that doesn't provide them, you will get an unimplemented error from the server. An effort has been made to call out which commmands are extensions in their documentation. Also, it is important to realize that brond intentionally separates the wallet functionality into a separate process named bronwallet. This means if you are connected to the brond RPC server directly, only the RPCs which are related to chain services will be available. Depending on your application, you might only need chain-related RPCs. In contrast, bronwallet provides pass through treatment for chain-related RPCs, so it supports them in addition to wallet-related RPCs. There are 3 categories of errors that will be returned throughout this package: The first category of errors are typically one of ErrInvalidAuth, ErrInvalidEndpoint, ErrClientDisconnect, or ErrClientShutdown. NOTE: The ErrClientDisconnect will not be returned unless the DisableAutoReconnect flag is set since the client automatically handles reconnect by default as previously described. The second category of errors typically indicates a programmer error and as such the type can vary, but usually will be best handled by simply showing/logging it. The third category of errors, that is errors returned by the server, can be detected by type asserting the error in a *bronjson.RPCError. For example, to detect if a command is unimplemented by the remote RPC server: The following full-blown client examples are in the examples directory:
Package sdk is the official AWS SDK for the Go programming language. The AWS SDK for Go provides APIs and utilities that developers can use to build Go applications that use AWS services, such as Amazon Elastic Compute Cloud (Amazon EC2) and Amazon Simple Storage Service (Amazon S3). The SDK removes the complexity of coding directly against a web service interface. It hides a lot of the lower-level plumbing, such as authentication, request retries, and error handling. The SDK also includes helpful utilities on top of the AWS APIs that add additional capabilities and functionality. For example, the Amazon S3 Download and Upload Manager will automatically split up large objects into multiple parts and transfer them concurrently. See the s3manager package documentation for more information. https://docs.aws.amazon.com/sdk-for-go/api/service/s3/s3manager/ Checkout the Getting Started Guide and API Reference Docs detailed the SDK's components and details on each AWS client the SDK supports. The Getting Started Guide provides examples and detailed description of how to get setup with the SDK. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/welcome.html The API Reference Docs include a detailed breakdown of the SDK's components such as utilities and AWS clients. Use this as a reference of the Go types included with the SDK, such as AWS clients, API operations, and API parameters. https://docs.aws.amazon.com/sdk-for-go/api/ The SDK is composed of two main components, SDK core, and service clients. The SDK core packages are all available under the aws package at the root of the SDK. Each client for a supported AWS service is available within its own package under the service folder at the root of the SDK. aws - SDK core, provides common shared types such as Config, Logger, and utilities to make working with API parameters easier. awserr - Provides the error interface that the SDK will use for all errors that occur in the SDK's processing. This includes service API response errors as well. The Error type is made up of a code and message. Cast the SDK's returned error type to awserr.Error and call the Code method to compare returned error to specific error codes. See the package's documentation for additional values that can be extracted such as RequestId. credentials - Provides the types and built in credentials providers the SDK will use to retrieve AWS credentials to make API requests with. Nested under this folder are also additional credentials providers such as stscreds for assuming IAM roles, and ec2rolecreds for EC2 Instance roles. endpoints - Provides the AWS Regions and Endpoints metadata for the SDK. Use this to lookup AWS service endpoint information such as which services are in a region, and what regions a service is in. Constants are also provided for all region identifiers, e.g UsWest2RegionID for "us-west-2". session - Provides initial default configuration, and load configuration from external sources such as environment and shared credentials file. request - Provides the API request sending, and retry logic for the SDK. This package also includes utilities for defining your own request retryer, and configuring how the SDK processes the request. service - Clients for AWS services. All services supported by the SDK are available under this folder. The SDK includes the Go types and utilities you can use to make requests to AWS service APIs. Within the service folder at the root of the SDK you'll find a package for each AWS service the SDK supports. All service clients follows a common pattern of creation and usage. When creating a client for an AWS service you'll first need to have a Session value constructed. The Session provides shared configuration that can be shared between your service clients. When service clients are created you can pass in additional configuration via the aws.Config type to override configuration provided by in the Session to create service client instances with custom configuration. Once the service's client is created you can use it to make API requests the AWS service. These clients are safe to use concurrently. In the AWS SDK for Go, you can configure settings for service clients, such as the log level and maximum number of retries. Most settings are optional; however, for each service client, you must specify a region and your credentials. The SDK uses these values to send requests to the correct AWS region and sign requests with the correct credentials. You can specify these values as part of a session or as environment variables. See the SDK's configuration guide for more information. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html See the session package documentation for more information on how to use Session with the SDK. https://docs.aws.amazon.com/sdk-for-go/api/aws/session/ See the Config type in the aws package for more information on configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config When using the SDK you'll generally need your AWS credentials to authenticate with AWS services. The SDK supports multiple methods of supporting these credentials. By default the SDK will source credentials automatically from its default credential chain. See the session package for more information on this chain, and how to configure it. The common items in the credential chain are the following: Environment Credentials - Set of environment variables that are useful when sub processes are created for specific roles. Shared Credentials file (~/.aws/credentials) - This file stores your credentials based on a profile name and is useful for local development. EC2 Instance Role Credentials - Use EC2 Instance Role to assign credentials to application running on an EC2 instance. This removes the need to manage credential files in production. Credentials can be configured in code as well by setting the Config's Credentials value to a custom provider or using one of the providers included with the SDK to bypass the default credential chain and use a custom one. This is helpful when you want to instruct the SDK to only use a specific set of credentials or providers. This example creates a credential provider for assuming an IAM role, "myRoleARN" and configures the S3 service client to use that role for API requests. See the credentials package documentation for more information on credential providers included with the SDK, and how to customize the SDK's usage of credentials. https://docs.aws.amazon.com/sdk-for-go/api/aws/credentials The SDK has support for the shared configuration file (~/.aws/config). This support can be enabled by setting the environment variable, "AWS_SDK_LOAD_CONFIG=1", or enabling the feature in code when creating a Session via the Option's SharedConfigState parameter. In addition to the credentials you'll need to specify the region the SDK will use to make AWS API requests to. In the SDK you can specify the region either with an environment variable, or directly in code when a Session or service client is created. The last value specified in code wins if the region is specified multiple ways. To set the region via the environment variable set the "AWS_REGION" to the region you want to the SDK to use. Using this method to set the region will allow you to run your application in multiple regions without needing additional code in the application to select the region. The endpoints package includes constants for all regions the SDK knows. The values are all suffixed with RegionID. These values are helpful, because they reduce the need to type the region string manually. To set the region on a Session use the aws package's Config struct parameter Region to the AWS region you want the service clients created from the session to use. This is helpful when you want to create multiple service clients, and all of the clients make API requests to the same region. See the endpoints package for the AWS Regions and Endpoints metadata. https://docs.aws.amazon.com/sdk-for-go/api/aws/endpoints/ In addition to setting the region when creating a Session you can also set the region on a per service client bases. This overrides the region of a Session. This is helpful when you want to create service clients in specific regions different from the Session's region. See the Config type in the aws package for more information and additional options such as setting the Endpoint, and other service client configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config Once the client is created you can make an API request to the service. Each API method takes a input parameter, and returns the service response and an error. The SDK provides methods for making the API call in multiple ways. In this list we'll use the S3 ListObjects API as an example for the different ways of making API requests. ListObjects - Base API operation that will make the API request to the service. ListObjectsRequest - API methods suffixed with Request will construct the API request, but not send it. This is also helpful when you want to get a presigned URL for a request, and share the presigned URL instead of your application making the request directly. ListObjectsPages - Same as the base API operation, but uses a callback to automatically handle pagination of the API's response. ListObjectsWithContext - Same as base API operation, but adds support for the Context pattern. This is helpful for controlling the canceling of in flight requests. See the Go standard library context package for more information. This method also takes request package's Option functional options as the variadic argument for modifying how the request will be made, or extracting information from the raw HTTP response. ListObjectsPagesWithContext - same as ListObjectsPages, but adds support for the Context pattern. Similar to ListObjectsWithContext this method also takes the request package's Option function option types as the variadic argument. In addition to the API operations the SDK also includes several higher level methods that abstract checking for and waiting for an AWS resource to be in a desired state. In this list we'll use WaitUntilBucketExists to demonstrate the different forms of waiters. WaitUntilBucketExists. - Method to make API request to query an AWS service for a resource's state. Will return successfully when that state is accomplished. WaitUntilBucketExistsWithContext - Same as WaitUntilBucketExists, but adds support for the Context pattern. In addition these methods take request package's WaiterOptions to configure the waiter, and how underlying request will be made by the SDK. The API method will document which error codes the service might return for the operation. These errors will also be available as const strings prefixed with "ErrCode" in the service client's package. If there are no errors listed in the API's SDK documentation you'll need to consult the AWS service's API documentation for the errors that could be returned. Pagination helper methods are suffixed with "Pages", and provide the functionality needed to round trip API page requests. Pagination methods take a callback function that will be called for each page of the API's response. Waiter helper methods provide the functionality to wait for an AWS resource state. These methods abstract the logic needed to to check the state of an AWS resource, and wait until that resource is in a desired state. The waiter will block until the resource is in the state that is desired, an error occurs, or the waiter times out. If a resource times out the error code returned will be request.WaiterResourceNotReadyErrorCode. This example shows a complete working Go file which will upload a file to S3 and use the Context pattern to implement timeout logic that will cancel the request if it takes too long. This example highlights how to use sessions, create a service client, make a request, handle the error, and process the response.
Package sdk is the official AWS SDK for the Go programming language. The AWS SDK for Go provides APIs and utilities that developers can use to build Go applications that use AWS services, such as Amazon Elastic Compute Cloud (Amazon EC2) and Amazon Simple Storage Service (Amazon S3). The SDK removes the complexity of coding directly against a web service interface. It hides a lot of the lower-level plumbing, such as authentication, request retries, and error handling. The SDK also includes helpful utilities on top of the AWS APIs that add additional capabilities and functionality. For example, the Amazon S3 Download and Upload Manager will automatically split up large objects into multiple parts and transfer them concurrently. See the s3manager package documentation for more information. https://docs.aws.amazon.com/sdk-for-go/api/service/s3/s3manager/ Checkout the Getting Started Guide and API Reference Docs detailed the SDK's components and details on each AWS client the SDK supports. The Getting Started Guide provides examples and detailed description of how to get setup with the SDK. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/welcome.html The API Reference Docs include a detailed breakdown of the SDK's components such as utilities and AWS clients. Use this as a reference of the Go types included with the SDK, such as AWS clients, API operations, and API parameters. https://docs.aws.amazon.com/sdk-for-go/api/ The SDK is composed of two main components, SDK core, and service clients. The SDK core packages are all available under the aws package at the root of the SDK. Each client for a supported AWS service is available within its own package under the service folder at the root of the SDK. aws - SDK core, provides common shared types such as Config, Logger, and utilities to make working with API parameters easier. awserr - Provides the error interface that the SDK will use for all errors that occur in the SDK's processing. This includes service API response errors as well. The Error type is made up of a code and message. Cast the SDK's returned error type to awserr.Error and call the Code method to compare returned error to specific error codes. See the package's documentation for additional values that can be extracted such as RequestId. credentials - Provides the types and built in credentials providers the SDK will use to retrieve AWS credentials to make API requests with. Nested under this folder are also additional credentials providers such as stscreds for assuming IAM roles, and ec2rolecreds for EC2 Instance roles. endpoints - Provides the AWS Regions and Endpoints metadata for the SDK. Use this to lookup AWS service endpoint information such as which services are in a region, and what regions a service is in. Constants are also provided for all region identifiers, e.g UsWest2RegionID for "us-west-2". session - Provides initial default configuration, and load configuration from external sources such as environment and shared credentials file. request - Provides the API request sending, and retry logic for the SDK. This package also includes utilities for defining your own request retryer, and configuring how the SDK processes the request. service - Clients for AWS services. All services supported by the SDK are available under this folder. The SDK includes the Go types and utilities you can use to make requests to AWS service APIs. Within the service folder at the root of the SDK you'll find a package for each AWS service the SDK supports. All service clients follows a common pattern of creation and usage. When creating a client for an AWS service you'll first need to have a Session value constructed. The Session provides shared configuration that can be shared between your service clients. When service clients are created you can pass in additional configuration via the aws.Config type to override configuration provided by in the Session to create service client instances with custom configuration. Once the service's client is created you can use it to make API requests the AWS service. These clients are safe to use concurrently. In the AWS SDK for Go, you can configure settings for service clients, such as the log level and maximum number of retries. Most settings are optional; however, for each service client, you must specify a region and your credentials. The SDK uses these values to send requests to the correct AWS region and sign requests with the correct credentials. You can specify these values as part of a session or as environment variables. See the SDK's configuration guide for more information. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html See the session package documentation for more information on how to use Session with the SDK. https://docs.aws.amazon.com/sdk-for-go/api/aws/session/ See the Config type in the aws package for more information on configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config When using the SDK you'll generally need your AWS credentials to authenticate with AWS services. The SDK supports multiple methods of supporting these credentials. By default the SDK will source credentials automatically from its default credential chain. See the session package for more information on this chain, and how to configure it. The common items in the credential chain are the following: Environment Credentials - Set of environment variables that are useful when sub processes are created for specific roles. Shared Credentials file (~/.aws/credentials) - This file stores your credentials based on a profile name and is useful for local development. EC2 Instance Role Credentials - Use EC2 Instance Role to assign credentials to application running on an EC2 instance. This removes the need to manage credential files in production. Credentials can be configured in code as well by setting the Config's Credentials value to a custom provider or using one of the providers included with the SDK to bypass the default credential chain and use a custom one. This is helpful when you want to instruct the SDK to only use a specific set of credentials or providers. This example creates a credential provider for assuming an IAM role, "myRoleARN" and configures the S3 service client to use that role for API requests. See the credentials package documentation for more information on credential providers included with the SDK, and how to customize the SDK's usage of credentials. https://docs.aws.amazon.com/sdk-for-go/api/aws/credentials The SDK has support for the shared configuration file (~/.aws/config). This support can be enabled by setting the environment variable, "AWS_SDK_LOAD_CONFIG=1", or enabling the feature in code when creating a Session via the Option's SharedConfigState parameter. In addition to the credentials you'll need to specify the region the SDK will use to make AWS API requests to. In the SDK you can specify the region either with an environment variable, or directly in code when a Session or service client is created. The last value specified in code wins if the region is specified multiple ways. To set the region via the environment variable set the "AWS_REGION" to the region you want to the SDK to use. Using this method to set the region will allow you to run your application in multiple regions without needing additional code in the application to select the region. The endpoints package includes constants for all regions the SDK knows. The values are all suffixed with RegionID. These values are helpful, because they reduce the need to type the region string manually. To set the region on a Session use the aws package's Config struct parameter Region to the AWS region you want the service clients created from the session to use. This is helpful when you want to create multiple service clients, and all of the clients make API requests to the same region. See the endpoints package for the AWS Regions and Endpoints metadata. https://docs.aws.amazon.com/sdk-for-go/api/aws/endpoints/ In addition to setting the region when creating a Session you can also set the region on a per service client bases. This overrides the region of a Session. This is helpful when you want to create service clients in specific regions different from the Session's region. See the Config type in the aws package for more information and additional options such as setting the Endpoint, and other service client configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config Once the client is created you can make an API request to the service. Each API method takes a input parameter, and returns the service response and an error. The SDK provides methods for making the API call in multiple ways. In this list we'll use the S3 ListObjects API as an example for the different ways of making API requests. ListObjects - Base API operation that will make the API request to the service. ListObjectsRequest - API methods suffixed with Request will construct the API request, but not send it. This is also helpful when you want to get a presigned URL for a request, and share the presigned URL instead of your application making the request directly. ListObjectsPages - Same as the base API operation, but uses a callback to automatically handle pagination of the API's response. ListObjectsWithContext - Same as base API operation, but adds support for the Context pattern. This is helpful for controlling the canceling of in flight requests. See the Go standard library context package for more information. This method also takes request package's Option functional options as the variadic argument for modifying how the request will be made, or extracting information from the raw HTTP response. ListObjectsPagesWithContext - same as ListObjectsPages, but adds support for the Context pattern. Similar to ListObjectsWithContext this method also takes the request package's Option function option types as the variadic argument. In addition to the API operations the SDK also includes several higher level methods that abstract checking for and waiting for an AWS resource to be in a desired state. In this list we'll use WaitUntilBucketExists to demonstrate the different forms of waiters. WaitUntilBucketExists. - Method to make API request to query an AWS service for a resource's state. Will return successfully when that state is accomplished. WaitUntilBucketExistsWithContext - Same as WaitUntilBucketExists, but adds support for the Context pattern. In addition these methods take request package's WaiterOptions to configure the waiter, and how underlying request will be made by the SDK. The API method will document which error codes the service might return for the operation. These errors will also be available as const strings prefixed with "ErrCode" in the service client's package. If there are no errors listed in the API's SDK documentation you'll need to consult the AWS service's API documentation for the errors that could be returned. Pagination helper methods are suffixed with "Pages", and provide the functionality needed to round trip API page requests. Pagination methods take a callback function that will be called for each page of the API's response. Waiter helper methods provide the functionality to wait for an AWS resource state. These methods abstract the logic needed to to check the state of an AWS resource, and wait until that resource is in a desired state. The waiter will block until the resource is in the state that is desired, an error occurs, or the waiter times out. If a resource times out the error code returned will be request.WaiterResourceNotReadyErrorCode. This example shows a complete working Go file which will upload a file to S3 and use the Context pattern to implement timeout logic that will cancel the request if it takes too long. This example highlights how to use sessions, create a service client, make a request, handle the error, and process the response.
Package sdk is the official AWS SDK for the Go programming language. The AWS SDK for Go provides APIs and utilities that developers can use to build Go applications that use AWS services, such as Amazon Elastic Compute Cloud (Amazon EC2) and Amazon Simple Storage Service (Amazon S3). The SDK removes the complexity of coding directly against a web service interface. It hides a lot of the lower-level plumbing, such as authentication, request retries, and error handling. The SDK also includes helpful utilities on top of the AWS APIs that add additional capabilities and functionality. For example, the Amazon S3 Download and Upload Manager will automatically split up large objects into multiple parts and transfer them concurrently. See the s3manager package documentation for more information. https://docs.aws.amazon.com/sdk-for-go/api/service/s3/s3manager/ Checkout the Getting Started Guide and API Reference Docs detailed the SDK's components and details on each AWS client the SDK supports. The Getting Started Guide provides examples and detailed description of how to get setup with the SDK. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/welcome.html The API Reference Docs include a detailed breakdown of the SDK's components such as utilities and AWS clients. Use this as a reference of the Go types included with the SDK, such as AWS clients, API operations, and API parameters. https://docs.aws.amazon.com/sdk-for-go/api/ The SDK is composed of two main components, SDK core, and service clients. The SDK core packages are all available under the aws package at the root of the SDK. Each client for a supported AWS service is available within its own package under the service folder at the root of the SDK. aws - SDK core, provides common shared types such as Config, Logger, and utilities to make working with API parameters easier. awserr - Provides the error interface that the SDK will use for all errors that occur in the SDK's processing. This includes service API response errors as well. The Error type is made up of a code and message. Cast the SDK's returned error type to awserr.Error and call the Code method to compare returned error to specific error codes. See the package's documentation for additional values that can be extracted such as RequestId. credentials - Provides the types and built in credentials providers the SDK will use to retrieve AWS credentials to make API requests with. Nested under this folder are also additional credentials providers such as stscreds for assuming IAM roles, and ec2rolecreds for EC2 Instance roles. endpoints - Provides the AWS Regions and Endpoints metadata for the SDK. Use this to lookup AWS service endpoint information such as which services are in a region, and what regions a service is in. Constants are also provided for all region identifiers, e.g UsWest2RegionID for "us-west-2". session - Provides initial default configuration, and load configuration from external sources such as environment and shared credentials file. request - Provides the API request sending, and retry logic for the SDK. This package also includes utilities for defining your own request retryer, and configuring how the SDK processes the request. service - Clients for AWS services. All services supported by the SDK are available under this folder. The SDK includes the Go types and utilities you can use to make requests to AWS service APIs. Within the service folder at the root of the SDK you'll find a package for each AWS service the SDK supports. All service clients follows a common pattern of creation and usage. When creating a client for an AWS service you'll first need to have a Session value constructed. The Session provides shared configuration that can be shared between your service clients. When service clients are created you can pass in additional configuration via the aws.Config type to override configuration provided by in the Session to create service client instances with custom configuration. Once the service's client is created you can use it to make API requests the AWS service. These clients are safe to use concurrently. In the AWS SDK for Go, you can configure settings for service clients, such as the log level and maximum number of retries. Most settings are optional; however, for each service client, you must specify a region and your credentials. The SDK uses these values to send requests to the correct AWS region and sign requests with the correct credentials. You can specify these values as part of a session or as environment variables. See the SDK's configuration guide for more information. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html See the session package documentation for more information on how to use Session with the SDK. https://docs.aws.amazon.com/sdk-for-go/api/aws/session/ See the Config type in the aws package for more information on configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config When using the SDK you'll generally need your AWS credentials to authenticate with AWS services. The SDK supports multiple methods of supporting these credentials. By default the SDK will source credentials automatically from its default credential chain. See the session package for more information on this chain, and how to configure it. The common items in the credential chain are the following: Environment Credentials - Set of environment variables that are useful when sub processes are created for specific roles. Shared Credentials file (~/.aws/credentials) - This file stores your credentials based on a profile name and is useful for local development. EC2 Instance Role Credentials - Use EC2 Instance Role to assign credentials to application running on an EC2 instance. This removes the need to manage credential files in production. Credentials can be configured in code as well by setting the Config's Credentials value to a custom provider or using one of the providers included with the SDK to bypass the default credential chain and use a custom one. This is helpful when you want to instruct the SDK to only use a specific set of credentials or providers. This example creates a credential provider for assuming an IAM role, "myRoleARN" and configures the S3 service client to use that role for API requests. See the credentials package documentation for more information on credential providers included with the SDK, and how to customize the SDK's usage of credentials. https://docs.aws.amazon.com/sdk-for-go/api/aws/credentials The SDK has support for the shared configuration file (~/.aws/config). This support can be enabled by setting the environment variable, "AWS_SDK_LOAD_CONFIG=1", or enabling the feature in code when creating a Session via the Option's SharedConfigState parameter. In addition to the credentials you'll need to specify the region the SDK will use to make AWS API requests to. In the SDK you can specify the region either with an environment variable, or directly in code when a Session or service client is created. The last value specified in code wins if the region is specified multiple ways. To set the region via the environment variable set the "AWS_REGION" to the region you want to the SDK to use. Using this method to set the region will allow you to run your application in multiple regions without needing additional code in the application to select the region. The endpoints package includes constants for all regions the SDK knows. The values are all suffixed with RegionID. These values are helpful, because they reduce the need to type the region string manually. To set the region on a Session use the aws package's Config struct parameter Region to the AWS region you want the service clients created from the session to use. This is helpful when you want to create multiple service clients, and all of the clients make API requests to the same region. See the endpoints package for the AWS Regions and Endpoints metadata. https://docs.aws.amazon.com/sdk-for-go/api/aws/endpoints/ In addition to setting the region when creating a Session you can also set the region on a per service client bases. This overrides the region of a Session. This is helpful when you want to create service clients in specific regions different from the Session's region. See the Config type in the aws package for more information and additional options such as setting the Endpoint, and other service client configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config Once the client is created you can make an API request to the service. Each API method takes a input parameter, and returns the service response and an error. The SDK provides methods for making the API call in multiple ways. In this list we'll use the S3 ListObjects API as an example for the different ways of making API requests. ListObjects - Base API operation that will make the API request to the service. ListObjectsRequest - API methods suffixed with Request will construct the API request, but not send it. This is also helpful when you want to get a presigned URL for a request, and share the presigned URL instead of your application making the request directly. ListObjectsPages - Same as the base API operation, but uses a callback to automatically handle pagination of the API's response. ListObjectsWithContext - Same as base API operation, but adds support for the Context pattern. This is helpful for controlling the canceling of in flight requests. See the Go standard library context package for more information. This method also takes request package's Option functional options as the variadic argument for modifying how the request will be made, or extracting information from the raw HTTP response. ListObjectsPagesWithContext - same as ListObjectsPages, but adds support for the Context pattern. Similar to ListObjectsWithContext this method also takes the request package's Option function option types as the variadic argument. In addition to the API operations the SDK also includes several higher level methods that abstract checking for and waiting for an AWS resource to be in a desired state. In this list we'll use WaitUntilBucketExists to demonstrate the different forms of waiters. WaitUntilBucketExists. - Method to make API request to query an AWS service for a resource's state. Will return successfully when that state is accomplished. WaitUntilBucketExistsWithContext - Same as WaitUntilBucketExists, but adds support for the Context pattern. In addition these methods take request package's WaiterOptions to configure the waiter, and how underlying request will be made by the SDK. The API method will document which error codes the service might return for the operation. These errors will also be available as const strings prefixed with "ErrCode" in the service client's package. If there are no errors listed in the API's SDK documentation you'll need to consult the AWS service's API documentation for the errors that could be returned. Pagination helper methods are suffixed with "Pages", and provide the functionality needed to round trip API page requests. Pagination methods take a callback function that will be called for each page of the API's response. Waiter helper methods provide the functionality to wait for an AWS resource state. These methods abstract the logic needed to to check the state of an AWS resource, and wait until that resource is in a desired state. The waiter will block until the resource is in the state that is desired, an error occurs, or the waiter times out. If a resource times out the error code returned will be request.WaiterResourceNotReadyErrorCode. This example shows a complete working Go file which will upload a file to S3 and use the Context pattern to implement timeout logic that will cancel the request if it takes too long. This example highlights how to use sessions, create a service client, make a request, handle the error, and process the response.
Package sdk is the official AWS SDK for the Go programming language. The AWS SDK for Go provides APIs and utilities that developers can use to build Go applications that use AWS services, such as Amazon Elastic Compute Cloud (Amazon EC2) and Amazon Simple Storage Service (Amazon S3). The SDK removes the complexity of coding directly against a web service interface. It hides a lot of the lower-level plumbing, such as authentication, request retries, and error handling. The SDK also includes helpful utilities on top of the AWS APIs that add additional capabilities and functionality. For example, the Amazon S3 Download and Upload Manager will automatically split up large objects into multiple parts and transfer them concurrently. See the s3manager package documentation for more information. https://docs.aws.amazon.com/sdk-for-go/api/service/s3/s3manager/ Checkout the Getting Started Guide and API Reference Docs detailed the SDK's components and details on each AWS client the SDK supports. The Getting Started Guide provides examples and detailed description of how to get setup with the SDK. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/welcome.html The API Reference Docs include a detailed breakdown of the SDK's components such as utilities and AWS clients. Use this as a reference of the Go types included with the SDK, such as AWS clients, API operations, and API parameters. https://docs.aws.amazon.com/sdk-for-go/api/ The SDK is composed of two main components, SDK core, and service clients. The SDK core packages are all available under the aws package at the root of the SDK. Each client for a supported AWS service is available within its own package under the service folder at the root of the SDK. aws - SDK core, provides common shared types such as Config, Logger, and utilities to make working with API parameters easier. awserr - Provides the error interface that the SDK will use for all errors that occur in the SDK's processing. This includes service API response errors as well. The Error type is made up of a code and message. Cast the SDK's returned error type to awserr.Error and call the Code method to compare returned error to specific error codes. See the package's documentation for additional values that can be extracted such as RequestId. credentials - Provides the types and built in credentials providers the SDK will use to retrieve AWS credentials to make API requests with. Nested under this folder are also additional credentials providers such as stscreds for assuming IAM roles, and ec2rolecreds for EC2 Instance roles. endpoints - Provides the AWS Regions and Endpoints metadata for the SDK. Use this to lookup AWS service endpoint information such as which services are in a region, and what regions a service is in. Constants are also provided for all region identifiers, e.g UsWest2RegionID for "us-west-2". session - Provides initial default configuration, and load configuration from external sources such as environment and shared credentials file. request - Provides the API request sending, and retry logic for the SDK. This package also includes utilities for defining your own request retryer, and configuring how the SDK processes the request. service - Clients for AWS services. All services supported by the SDK are available under this folder. The SDK includes the Go types and utilities you can use to make requests to AWS service APIs. Within the service folder at the root of the SDK you'll find a package for each AWS service the SDK supports. All service clients follows a common pattern of creation and usage. When creating a client for an AWS service you'll first need to have a Session value constructed. The Session provides shared configuration that can be shared between your service clients. When service clients are created you can pass in additional configuration via the aws.Config type to override configuration provided by in the Session to create service client instances with custom configuration. Once the service's client is created you can use it to make API requests the AWS service. These clients are safe to use concurrently. In the AWS SDK for Go, you can configure settings for service clients, such as the log level and maximum number of retries. Most settings are optional; however, for each service client, you must specify a region and your credentials. The SDK uses these values to send requests to the correct AWS region and sign requests with the correct credentials. You can specify these values as part of a session or as environment variables. See the SDK's configuration guide for more information. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html See the session package documentation for more information on how to use Session with the SDK. https://docs.aws.amazon.com/sdk-for-go/api/aws/session/ See the Config type in the aws package for more information on configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config When using the SDK you'll generally need your AWS credentials to authenticate with AWS services. The SDK supports multiple methods of supporting these credentials. By default the SDK will source credentials automatically from its default credential chain. See the session package for more information on this chain, and how to configure it. The common items in the credential chain are the following: Environment Credentials - Set of environment variables that are useful when sub processes are created for specific roles. Shared Credentials file (~/.aws/credentials) - This file stores your credentials based on a profile name and is useful for local development. EC2 Instance Role Credentials - Use EC2 Instance Role to assign credentials to application running on an EC2 instance. This removes the need to manage credential files in production. Credentials can be configured in code as well by setting the Config's Credentials value to a custom provider or using one of the providers included with the SDK to bypass the default credential chain and use a custom one. This is helpful when you want to instruct the SDK to only use a specific set of credentials or providers. This example creates a credential provider for assuming an IAM role, "myRoleARN" and configures the S3 service client to use that role for API requests. See the credentials package documentation for more information on credential providers included with the SDK, and how to customize the SDK's usage of credentials. https://docs.aws.amazon.com/sdk-for-go/api/aws/credentials The SDK has support for the shared configuration file (~/.aws/config). This support can be enabled by setting the environment variable, "AWS_SDK_LOAD_CONFIG=1", or enabling the feature in code when creating a Session via the Option's SharedConfigState parameter. In addition to the credentials you'll need to specify the region the SDK will use to make AWS API requests to. In the SDK you can specify the region either with an environment variable, or directly in code when a Session or service client is created. The last value specified in code wins if the region is specified multiple ways. To set the region via the environment variable set the "AWS_REGION" to the region you want to the SDK to use. Using this method to set the region will allow you to run your application in multiple regions without needing additional code in the application to select the region. The endpoints package includes constants for all regions the SDK knows. The values are all suffixed with RegionID. These values are helpful, because they reduce the need to type the region string manually. To set the region on a Session use the aws package's Config struct parameter Region to the AWS region you want the service clients created from the session to use. This is helpful when you want to create multiple service clients, and all of the clients make API requests to the same region. See the endpoints package for the AWS Regions and Endpoints metadata. https://docs.aws.amazon.com/sdk-for-go/api/aws/endpoints/ In addition to setting the region when creating a Session you can also set the region on a per service client bases. This overrides the region of a Session. This is helpful when you want to create service clients in specific regions different from the Session's region. See the Config type in the aws package for more information and additional options such as setting the Endpoint, and other service client configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config Once the client is created you can make an API request to the service. Each API method takes a input parameter, and returns the service response and an error. The SDK provides methods for making the API call in multiple ways. In this list we'll use the S3 ListObjects API as an example for the different ways of making API requests. ListObjects - Base API operation that will make the API request to the service. ListObjectsRequest - API methods suffixed with Request will construct the API request, but not send it. This is also helpful when you want to get a presigned URL for a request, and share the presigned URL instead of your application making the request directly. ListObjectsPages - Same as the base API operation, but uses a callback to automatically handle pagination of the API's response. ListObjectsWithContext - Same as base API operation, but adds support for the Context pattern. This is helpful for controlling the canceling of in flight requests. See the Go standard library context package for more information. This method also takes request package's Option functional options as the variadic argument for modifying how the request will be made, or extracting information from the raw HTTP response. ListObjectsPagesWithContext - same as ListObjectsPages, but adds support for the Context pattern. Similar to ListObjectsWithContext this method also takes the request package's Option function option types as the variadic argument. In addition to the API operations the SDK also includes several higher level methods that abstract checking for and waiting for an AWS resource to be in a desired state. In this list we'll use WaitUntilBucketExists to demonstrate the different forms of waiters. WaitUntilBucketExists. - Method to make API request to query an AWS service for a resource's state. Will return successfully when that state is accomplished. WaitUntilBucketExistsWithContext - Same as WaitUntilBucketExists, but adds support for the Context pattern. In addition these methods take request package's WaiterOptions to configure the waiter, and how underlying request will be made by the SDK. The API method will document which error codes the service might return for the operation. These errors will also be available as const strings prefixed with "ErrCode" in the service client's package. If there are no errors listed in the API's SDK documentation you'll need to consult the AWS service's API documentation for the errors that could be returned. Pagination helper methods are suffixed with "Pages", and provide the functionality needed to round trip API page requests. Pagination methods take a callback function that will be called for each page of the API's response. Waiter helper methods provide the functionality to wait for an AWS resource state. These methods abstract the logic needed to to check the state of an AWS resource, and wait until that resource is in a desired state. The waiter will block until the resource is in the state that is desired, an error occurs, or the waiter times out. If a resource times out the error code returned will be request.WaiterResourceNotReadyErrorCode. This example shows a complete working Go file which will upload a file to S3 and use the Context pattern to implement timeout logic that will cancel the request if it takes too long. This example highlights how to use sessions, create a service client, make a request, handle the error, and process the response.
Package sdk is the official AWS SDK for the Go programming language. The AWS SDK for Go provides APIs and utilities that developers can use to build Go applications that use AWS services, such as Amazon Elastic Compute Cloud (Amazon EC2) and Amazon Simple Storage Service (Amazon S3). The SDK removes the complexity of coding directly against a web service interface. It hides a lot of the lower-level plumbing, such as authentication, request retries, and error handling. The SDK also includes helpful utilities on top of the AWS APIs that add additional capabilities and functionality. For example, the Amazon S3 Download and Upload Manager will automatically split up large objects into multiple parts and transfer them concurrently. See the s3manager package documentation for more information. https://docs.aws.amazon.com/sdk-for-go/api/service/s3/s3manager/ Checkout the Getting Started Guide and API Reference Docs detailed the SDK's components and details on each AWS client the SDK supports. The Getting Started Guide provides examples and detailed description of how to get setup with the SDK. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/welcome.html The API Reference Docs include a detailed breakdown of the SDK's components such as utilities and AWS clients. Use this as a reference of the Go types included with the SDK, such as AWS clients, API operations, and API parameters. https://docs.aws.amazon.com/sdk-for-go/api/ The SDK is composed of two main components, SDK core, and service clients. The SDK core packages are all available under the aws package at the root of the SDK. Each client for a supported AWS service is available within its own package under the service folder at the root of the SDK. aws - SDK core, provides common shared types such as Config, Logger, and utilities to make working with API parameters easier. awserr - Provides the error interface that the SDK will use for all errors that occur in the SDK's processing. This includes service API response errors as well. The Error type is made up of a code and message. Cast the SDK's returned error type to awserr.Error and call the Code method to compare returned error to specific error codes. See the package's documentation for additional values that can be extracted such as RequestId. credentials - Provides the types and built in credentials providers the SDK will use to retrieve AWS credentials to make API requests with. Nested under this folder are also additional credentials providers such as stscreds for assuming IAM roles, and ec2rolecreds for EC2 Instance roles. endpoints - Provides the AWS Regions and Endpoints metadata for the SDK. Use this to lookup AWS service endpoint information such as which services are in a region, and what regions a service is in. Constants are also provided for all region identifiers, e.g UsWest2RegionID for "us-west-2". session - Provides initial default configuration, and load configuration from external sources such as environment and shared credentials file. request - Provides the API request sending, and retry logic for the SDK. This package also includes utilities for defining your own request retryer, and configuring how the SDK processes the request. service - Clients for AWS services. All services supported by the SDK are available under this folder. The SDK includes the Go types and utilities you can use to make requests to AWS service APIs. Within the service folder at the root of the SDK you'll find a package for each AWS service the SDK supports. All service clients follows a common pattern of creation and usage. When creating a client for an AWS service you'll first need to have a Session value constructed. The Session provides shared configuration that can be shared between your service clients. When service clients are created you can pass in additional configuration via the aws.Config type to override configuration provided by in the Session to create service client instances with custom configuration. Once the service's client is created you can use it to make API requests the AWS service. These clients are safe to use concurrently. In the AWS SDK for Go, you can configure settings for service clients, such as the log level and maximum number of retries. Most settings are optional; however, for each service client, you must specify a region and your credentials. The SDK uses these values to send requests to the correct AWS region and sign requests with the correct credentials. You can specify these values as part of a session or as environment variables. See the SDK's configuration guide for more information. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html See the session package documentation for more information on how to use Session with the SDK. https://docs.aws.amazon.com/sdk-for-go/api/aws/session/ See the Config type in the aws package for more information on configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config When using the SDK you'll generally need your AWS credentials to authenticate with AWS services. The SDK supports multiple methods of supporting these credentials. By default the SDK will source credentials automatically from its default credential chain. See the session package for more information on this chain, and how to configure it. The common items in the credential chain are the following: Environment Credentials - Set of environment variables that are useful when sub processes are created for specific roles. Shared Credentials file (~/.aws/credentials) - This file stores your credentials based on a profile name and is useful for local development. EC2 Instance Role Credentials - Use EC2 Instance Role to assign credentials to application running on an EC2 instance. This removes the need to manage credential files in production. Credentials can be configured in code as well by setting the Config's Credentials value to a custom provider or using one of the providers included with the SDK to bypass the default credential chain and use a custom one. This is helpful when you want to instruct the SDK to only use a specific set of credentials or providers. This example creates a credential provider for assuming an IAM role, "myRoleARN" and configures the S3 service client to use that role for API requests. See the credentials package documentation for more information on credential providers included with the SDK, and how to customize the SDK's usage of credentials. https://docs.aws.amazon.com/sdk-for-go/api/aws/credentials The SDK has support for the shared configuration file (~/.aws/config). This support can be enabled by setting the environment variable, "AWS_SDK_LOAD_CONFIG=1", or enabling the feature in code when creating a Session via the Option's SharedConfigState parameter. In addition to the credentials you'll need to specify the region the SDK will use to make AWS API requests to. In the SDK you can specify the region either with an environment variable, or directly in code when a Session or service client is created. The last value specified in code wins if the region is specified multiple ways. To set the region via the environment variable set the "AWS_REGION" to the region you want to the SDK to use. Using this method to set the region will allow you to run your application in multiple regions without needing additional code in the application to select the region. The endpoints package includes constants for all regions the SDK knows. The values are all suffixed with RegionID. These values are helpful, because they reduce the need to type the region string manually. To set the region on a Session use the aws package's Config struct parameter Region to the AWS region you want the service clients created from the session to use. This is helpful when you want to create multiple service clients, and all of the clients make API requests to the same region. See the endpoints package for the AWS Regions and Endpoints metadata. https://docs.aws.amazon.com/sdk-for-go/api/aws/endpoints/ In addition to setting the region when creating a Session you can also set the region on a per service client bases. This overrides the region of a Session. This is helpful when you want to create service clients in specific regions different from the Session's region. See the Config type in the aws package for more information and additional options such as setting the Endpoint, and other service client configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config Once the client is created you can make an API request to the service. Each API method takes a input parameter, and returns the service response and an error. The SDK provides methods for making the API call in multiple ways. In this list we'll use the S3 ListObjects API as an example for the different ways of making API requests. ListObjects - Base API operation that will make the API request to the service. ListObjectsRequest - API methods suffixed with Request will construct the API request, but not send it. This is also helpful when you want to get a presigned URL for a request, and share the presigned URL instead of your application making the request directly. ListObjectsPages - Same as the base API operation, but uses a callback to automatically handle pagination of the API's response. ListObjectsWithContext - Same as base API operation, but adds support for the Context pattern. This is helpful for controlling the canceling of in flight requests. See the Go standard library context package for more information. This method also takes request package's Option functional options as the variadic argument for modifying how the request will be made, or extracting information from the raw HTTP response. ListObjectsPagesWithContext - same as ListObjectsPages, but adds support for the Context pattern. Similar to ListObjectsWithContext this method also takes the request package's Option function option types as the variadic argument. In addition to the API operations the SDK also includes several higher level methods that abstract checking for and waiting for an AWS resource to be in a desired state. In this list we'll use WaitUntilBucketExists to demonstrate the different forms of waiters. WaitUntilBucketExists. - Method to make API request to query an AWS service for a resource's state. Will return successfully when that state is accomplished. WaitUntilBucketExistsWithContext - Same as WaitUntilBucketExists, but adds support for the Context pattern. In addition these methods take request package's WaiterOptions to configure the waiter, and how underlying request will be made by the SDK. The API method will document which error codes the service might return for the operation. These errors will also be available as const strings prefixed with "ErrCode" in the service client's package. If there are no errors listed in the API's SDK documentation you'll need to consult the AWS service's API documentation for the errors that could be returned. Pagination helper methods are suffixed with "Pages", and provide the functionality needed to round trip API page requests. Pagination methods take a callback function that will be called for each page of the API's response. Waiter helper methods provide the functionality to wait for an AWS resource state. These methods abstract the logic needed to to check the state of an AWS resource, and wait until that resource is in a desired state. The waiter will block until the resource is in the state that is desired, an error occurs, or the waiter times out. If a resource times out the error code returned will be request.WaiterResourceNotReadyErrorCode. This example shows a complete working Go file which will upload a file to S3 and use the Context pattern to implement timeout logic that will cancel the request if it takes too long. This example highlights how to use sessions, create a service client, make a request, handle the error, and process the response.
Package sdk is the official AWS SDK for the Go programming language. The AWS SDK for Go provides APIs and utilities that developers can use to build Go applications that use AWS services, such as Amazon Elastic Compute Cloud (Amazon EC2) and Amazon Simple Storage Service (Amazon S3). The SDK removes the complexity of coding directly against a web service interface. It hides a lot of the lower-level plumbing, such as authentication, request retries, and error handling. The SDK also includes helpful utilities on top of the AWS APIs that add additional capabilities and functionality. For example, the Amazon S3 Download and Upload Manager will automatically split up large objects into multiple parts and transfer them concurrently. See the s3manager package documentation for more information. https://docs.aws.amazon.com/sdk-for-go/api/service/s3/s3manager/ Checkout the Getting Started Guide and API Reference Docs detailed the SDK's components and details on each AWS client the SDK supports. The Getting Started Guide provides examples and detailed description of how to get setup with the SDK. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/welcome.html The API Reference Docs include a detailed breakdown of the SDK's components such as utilities and AWS clients. Use this as a reference of the Go types included with the SDK, such as AWS clients, API operations, and API parameters. https://docs.aws.amazon.com/sdk-for-go/api/ The SDK is composed of two main components, SDK core, and service clients. The SDK core packages are all available under the aws package at the root of the SDK. Each client for a supported AWS service is available within its own package under the service folder at the root of the SDK. aws - SDK core, provides common shared types such as Config, Logger, and utilities to make working with API parameters easier. awserr - Provides the error interface that the SDK will use for all errors that occur in the SDK's processing. This includes service API response errors as well. The Error type is made up of a code and message. Cast the SDK's returned error type to awserr.Error and call the Code method to compare returned error to specific error codes. See the package's documentation for additional values that can be extracted such as RequestId. credentials - Provides the types and built in credentials providers the SDK will use to retrieve AWS credentials to make API requests with. Nested under this folder are also additional credentials providers such as stscreds for assuming IAM roles, and ec2rolecreds for EC2 Instance roles. endpoints - Provides the AWS Regions and Endpoints metadata for the SDK. Use this to lookup AWS service endpoint information such as which services are in a region, and what regions a service is in. Constants are also provided for all region identifiers, e.g UsWest2RegionID for "us-west-2". session - Provides initial default configuration, and load configuration from external sources such as environment and shared credentials file. request - Provides the API request sending, and retry logic for the SDK. This package also includes utilities for defining your own request retryer, and configuring how the SDK processes the request. service - Clients for AWS services. All services supported by the SDK are available under this folder. The SDK includes the Go types and utilities you can use to make requests to AWS service APIs. Within the service folder at the root of the SDK you'll find a package for each AWS service the SDK supports. All service clients follows a common pattern of creation and usage. When creating a client for an AWS service you'll first need to have a Session value constructed. The Session provides shared configuration that can be shared between your service clients. When service clients are created you can pass in additional configuration via the aws.Config type to override configuration provided by in the Session to create service client instances with custom configuration. Once the service's client is created you can use it to make API requests the AWS service. These clients are safe to use concurrently. In the AWS SDK for Go, you can configure settings for service clients, such as the log level and maximum number of retries. Most settings are optional; however, for each service client, you must specify a region and your credentials. The SDK uses these values to send requests to the correct AWS region and sign requests with the correct credentials. You can specify these values as part of a session or as environment variables. See the SDK's configuration guide for more information. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html See the session package documentation for more information on how to use Session with the SDK. https://docs.aws.amazon.com/sdk-for-go/api/aws/session/ See the Config type in the aws package for more information on configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config When using the SDK you'll generally need your AWS credentials to authenticate with AWS services. The SDK supports multiple methods of supporting these credentials. By default the SDK will source credentials automatically from its default credential chain. See the session package for more information on this chain, and how to configure it. The common items in the credential chain are the following: Environment Credentials - Set of environment variables that are useful when sub processes are created for specific roles. Shared Credentials file (~/.aws/credentials) - This file stores your credentials based on a profile name and is useful for local development. EC2 Instance Role Credentials - Use EC2 Instance Role to assign credentials to application running on an EC2 instance. This removes the need to manage credential files in production. Credentials can be configured in code as well by setting the Config's Credentials value to a custom provider or using one of the providers included with the SDK to bypass the default credential chain and use a custom one. This is helpful when you want to instruct the SDK to only use a specific set of credentials or providers. This example creates a credential provider for assuming an IAM role, "myRoleARN" and configures the S3 service client to use that role for API requests. See the credentials package documentation for more information on credential providers included with the SDK, and how to customize the SDK's usage of credentials. https://docs.aws.amazon.com/sdk-for-go/api/aws/credentials The SDK has support for the shared configuration file (~/.aws/config). This support can be enabled by setting the environment variable, "AWS_SDK_LOAD_CONFIG=1", or enabling the feature in code when creating a Session via the Option's SharedConfigState parameter. In addition to the credentials you'll need to specify the region the SDK will use to make AWS API requests to. In the SDK you can specify the region either with an environment variable, or directly in code when a Session or service client is created. The last value specified in code wins if the region is specified multiple ways. To set the region via the environment variable set the "AWS_REGION" to the region you want to the SDK to use. Using this method to set the region will allow you to run your application in multiple regions without needing additional code in the application to select the region. The endpoints package includes constants for all regions the SDK knows. The values are all suffixed with RegionID. These values are helpful, because they reduce the need to type the region string manually. To set the region on a Session use the aws package's Config struct parameter Region to the AWS region you want the service clients created from the session to use. This is helpful when you want to create multiple service clients, and all of the clients make API requests to the same region. See the endpoints package for the AWS Regions and Endpoints metadata. https://docs.aws.amazon.com/sdk-for-go/api/aws/endpoints/ In addition to setting the region when creating a Session you can also set the region on a per service client bases. This overrides the region of a Session. This is helpful when you want to create service clients in specific regions different from the Session's region. See the Config type in the aws package for more information and additional options such as setting the Endpoint, and other service client configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config Once the client is created you can make an API request to the service. Each API method takes a input parameter, and returns the service response and an error. The SDK provides methods for making the API call in multiple ways. In this list we'll use the S3 ListObjects API as an example for the different ways of making API requests. ListObjects - Base API operation that will make the API request to the service. ListObjectsRequest - API methods suffixed with Request will construct the API request, but not send it. This is also helpful when you want to get a presigned URL for a request, and share the presigned URL instead of your application making the request directly. ListObjectsPages - Same as the base API operation, but uses a callback to automatically handle pagination of the API's response. ListObjectsWithContext - Same as base API operation, but adds support for the Context pattern. This is helpful for controlling the canceling of in flight requests. See the Go standard library context package for more information. This method also takes request package's Option functional options as the variadic argument for modifying how the request will be made, or extracting information from the raw HTTP response. ListObjectsPagesWithContext - same as ListObjectsPages, but adds support for the Context pattern. Similar to ListObjectsWithContext this method also takes the request package's Option function option types as the variadic argument. In addition to the API operations the SDK also includes several higher level methods that abstract checking for and waiting for an AWS resource to be in a desired state. In this list we'll use WaitUntilBucketExists to demonstrate the different forms of waiters. WaitUntilBucketExists. - Method to make API request to query an AWS service for a resource's state. Will return successfully when that state is accomplished. WaitUntilBucketExistsWithContext - Same as WaitUntilBucketExists, but adds support for the Context pattern. In addition these methods take request package's WaiterOptions to configure the waiter, and how underlying request will be made by the SDK. The API method will document which error codes the service might return for the operation. These errors will also be available as const strings prefixed with "ErrCode" in the service client's package. If there are no errors listed in the API's SDK documentation you'll need to consult the AWS service's API documentation for the errors that could be returned. Pagination helper methods are suffixed with "Pages", and provide the functionality needed to round trip API page requests. Pagination methods take a callback function that will be called for each page of the API's response. Waiter helper methods provide the functionality to wait for an AWS resource state. These methods abstract the logic needed to to check the state of an AWS resource, and wait until that resource is in a desired state. The waiter will block until the resource is in the state that is desired, an error occurs, or the waiter times out. If a resource times out the error code returned will be request.WaiterResourceNotReadyErrorCode. This example shows a complete working Go file which will upload a file to S3 and use the Context pattern to implement timeout logic that will cancel the request if it takes too long. This example highlights how to use sessions, create a service client, make a request, handle the error, and process the response.
Package rpcclient implements a websocket-enabled Decred JSON-RPC client. This client provides a robust and easy to use client for interfacing with a Decred RPC server that uses a mostly btcd/bitcoin core style Decred JSON-RPC API. This client has been tested with dcrd (https://github.com/decred/dcrd) and dcrwallet (https://github.com/decred/dcrwallet). In addition to the compatible standard HTTP POST JSON-RPC API, dcrd and dcrwallet provide a websocket interface that is more efficient than the standard HTTP POST method of accessing RPC. The section below discusses the differences between HTTP POST and websockets. By default, this client assumes the RPC server supports websockets and has TLS enabled. In practice, this currently means it assumes you are talking to dcrd or dcrwallet by default. However, configuration options are provided to fall back to HTTP POST and disable TLS to support talking with inferior bitcoin core style RPC servers. In HTTP POST-based JSON-RPC, every request creates a new HTTP connection, issues the call, waits for the response, and closes the connection. This adds quite a bit of overhead to every call and lacks flexibility for features such as notifications. In contrast, the websocket-based JSON-RPC interface provided by dcrd and dcrwallet only uses a single connection that remains open and allows asynchronous bi-directional communication. The websocket interface supports all of the same commands as HTTP POST, but they can be invoked without having to go through a connect/disconnect cycle for every call. In addition, the websocket interface provides other nice features such as the ability to register for asynchronous notifications of various events. The client provides both a synchronous (blocking) and asynchronous API. The synchronous (blocking) API is typically sufficient for most use cases. It works by issuing the RPC and blocking until the response is received. This allows straightforward code where you have the response as soon as the function returns. The asynchronous API works on the concept of futures. When you invoke the async version of a command, it will quickly return an instance of a type that promises to provide the result of the RPC at some future time. In the background, the RPC call is issued and the result is stored in the returned instance. Invoking the Receive method on the returned instance will either return the result immediately if it has already arrived, or block until it has. This is useful since it provides the caller with greater control over concurrency. The first important part of notifications is to realize that they will only work when connected via websockets. This should intuitively make sense because HTTP POST mode does not keep a connection open! All notifications provided by dcrd require registration to opt-in. For example, if you want to be notified when funds are received by a set of addresses, you register the addresses via the NotifyReceived (or NotifyReceivedAsync) function. Notifications are exposed by the client through the use of callback handlers which are setup via a NotificationHandlers instance that is specified by the caller when creating the client. It is important that these notification handlers complete quickly since they are intentionally in the main read loop and will block further reads until they complete. This provides the caller with the flexibility to decide what to do when notifications are coming in faster than they are being handled. In particular this means issuing a blocking RPC call from a callback handler will cause a deadlock as more server responses won't be read until the callback returns, but the callback would be waiting for a response. Thus, any additional RPCs must be issued an a completely decoupled manner. By default, when running in websockets mode, this client will automatically keep trying to reconnect to the RPC server should the connection be lost. There is a back-off in between each connection attempt until it reaches one try per minute. Once a connection is re-established, all previously registered notifications are automatically re-registered and any in-flight commands are re-issued. This means from the caller's perspective, the request simply takes longer to complete. The caller may invoke the Shutdown method on the client to force the client to cease reconnect attempts and return ErrClientShutdown for all outstanding commands. The automatic reconnection can be disabled by setting the DisableAutoReconnect flag to true in the connection config when creating the client. Minor RPC Server Differences and Chain/Wallet Separation Some of the commands are extensions specific to a particular RPC server. For example, the DebugLevel call is an extension only provided by dcrd (and dcrwallet passthrough). Therefore if you call one of these commands against an RPC server that doesn't provide them, you will get an unimplemented error from the server. An effort has been made to call out which commmands are extensions in their documentation. Also, it is important to realize that dcrd intentionally separates the wallet functionality into a separate process named dcrwallet. This means if you are connected to the dcrd RPC server directly, only the RPCs which are related to chain services will be available. Depending on your application, you might only need chain-related RPCs. In contrast, dcrwallet provides pass through treatment for chain-related RPCs, so it supports them in addition to wallet-related RPCs. There are 3 categories of errors that will be returned throughout this package: The first category of errors are typically one of ErrInvalidAuth, ErrInvalidEndpoint, ErrClientDisconnect, or ErrClientShutdown. NOTE: The ErrClientDisconnect will not be returned unless the DisableAutoReconnect flag is set since the client automatically handles reconnect by default as previously described. The second category of errors typically indicates a programmer error and as such the type can vary, but usually will be best handled by simply showing/logging it. The third category of errors, that is errors returned by the server, can be detected by type asserting the error in a *dcrjson.RPCError. For example, to detect if a command is unimplemented by the remote RPC server: The following full-blown client examples are in the examples directory:
Package sdk is the official AWS SDK for the Go programming language. The AWS SDK for Go provides APIs and utilities that developers can use to build Go applications that use AWS services, such as Amazon Elastic Compute Cloud (Amazon EC2) and Amazon Simple Storage Service (Amazon S3). The SDK removes the complexity of coding directly against a web service interface. It hides a lot of the lower-level plumbing, such as authentication, request retries, and error handling. The SDK also includes helpful utilities on top of the AWS APIs that add additional capabilities and functionality. For example, the Amazon S3 Download and Upload Manager will automatically split up large objects into multiple parts and transfer them concurrently. See the s3manager package documentation for more information. https://docs.aws.amazon.com/sdk-for-go/api/service/s3/s3manager/ Checkout the Getting Started Guide and API Reference Docs detailed the SDK's components and details on each AWS client the SDK supports. The Getting Started Guide provides examples and detailed description of how to get setup with the SDK. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/welcome.html The API Reference Docs include a detailed breakdown of the SDK's components such as utilities and AWS clients. Use this as a reference of the Go types included with the SDK, such as AWS clients, API operations, and API parameters. https://docs.aws.amazon.com/sdk-for-go/api/ The SDK is composed of two main components, SDK core, and service clients. The SDK core packages are all available under the aws package at the root of the SDK. Each client for a supported AWS service is available within its own package under the service folder at the root of the SDK. aws - SDK core, provides common shared types such as Config, Logger, and utilities to make working with API parameters easier. awserr - Provides the error interface that the SDK will use for all errors that occur in the SDK's processing. This includes service API response errors as well. The Error type is made up of a code and message. Cast the SDK's returned error type to awserr.Error and call the Code method to compare returned error to specific error codes. See the package's documentation for additional values that can be extracted such as RequestId. credentials - Provides the types and built in credentials providers the SDK will use to retrieve AWS credentials to make API requests with. Nested under this folder are also additional credentials providers such as stscreds for assuming IAM roles, and ec2rolecreds for EC2 Instance roles. endpoints - Provides the AWS Regions and Endpoints metadata for the SDK. Use this to lookup AWS service endpoint information such as which services are in a region, and what regions a service is in. Constants are also provided for all region identifiers, e.g UsWest2RegionID for "us-west-2". session - Provides initial default configuration, and load configuration from external sources such as environment and shared credentials file. request - Provides the API request sending, and retry logic for the SDK. This package also includes utilities for defining your own request retryer, and configuring how the SDK processes the request. service - Clients for AWS services. All services supported by the SDK are available under this folder. The SDK includes the Go types and utilities you can use to make requests to AWS service APIs. Within the service folder at the root of the SDK you'll find a package for each AWS service the SDK supports. All service clients follows a common pattern of creation and usage. When creating a client for an AWS service you'll first need to have a Session value constructed. The Session provides shared configuration that can be shared between your service clients. When service clients are created you can pass in additional configuration via the aws.Config type to override configuration provided by in the Session to create service client instances with custom configuration. Once the service's client is created you can use it to make API requests the AWS service. These clients are safe to use concurrently. In the AWS SDK for Go, you can configure settings for service clients, such as the log level and maximum number of retries. Most settings are optional; however, for each service client, you must specify a region and your credentials. The SDK uses these values to send requests to the correct AWS region and sign requests with the correct credentials. You can specify these values as part of a session or as environment variables. See the SDK's configuration guide for more information. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html See the session package documentation for more information on how to use Session with the SDK. https://docs.aws.amazon.com/sdk-for-go/api/aws/session/ See the Config type in the aws package for more information on configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config When using the SDK you'll generally need your AWS credentials to authenticate with AWS services. The SDK supports multiple methods of supporting these credentials. By default the SDK will source credentials automatically from its default credential chain. See the session package for more information on this chain, and how to configure it. The common items in the credential chain are the following: Environment Credentials - Set of environment variables that are useful when sub processes are created for specific roles. Shared Credentials file (~/.aws/credentials) - This file stores your credentials based on a profile name and is useful for local development. EC2 Instance Role Credentials - Use EC2 Instance Role to assign credentials to application running on an EC2 instance. This removes the need to manage credential files in production. Credentials can be configured in code as well by setting the Config's Credentials value to a custom provider or using one of the providers included with the SDK to bypass the default credential chain and use a custom one. This is helpful when you want to instruct the SDK to only use a specific set of credentials or providers. This example creates a credential provider for assuming an IAM role, "myRoleARN" and configures the S3 service client to use that role for API requests. See the credentials package documentation for more information on credential providers included with the SDK, and how to customize the SDK's usage of credentials. https://docs.aws.amazon.com/sdk-for-go/api/aws/credentials The SDK has support for the shared configuration file (~/.aws/config). This support can be enabled by setting the environment variable, "AWS_SDK_LOAD_CONFIG=1", or enabling the feature in code when creating a Session via the Option's SharedConfigState parameter. In addition to the credentials you'll need to specify the region the SDK will use to make AWS API requests to. In the SDK you can specify the region either with an environment variable, or directly in code when a Session or service client is created. The last value specified in code wins if the region is specified multiple ways. To set the region via the environment variable set the "AWS_REGION" to the region you want to the SDK to use. Using this method to set the region will allow you to run your application in multiple regions without needing additional code in the application to select the region. The endpoints package includes constants for all regions the SDK knows. The values are all suffixed with RegionID. These values are helpful, because they reduce the need to type the region string manually. To set the region on a Session use the aws package's Config struct parameter Region to the AWS region you want the service clients created from the session to use. This is helpful when you want to create multiple service clients, and all of the clients make API requests to the same region. See the endpoints package for the AWS Regions and Endpoints metadata. https://docs.aws.amazon.com/sdk-for-go/api/aws/endpoints/ In addition to setting the region when creating a Session you can also set the region on a per service client bases. This overrides the region of a Session. This is helpful when you want to create service clients in specific regions different from the Session's region. See the Config type in the aws package for more information and additional options such as setting the Endpoint, and other service client configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config Once the client is created you can make an API request to the service. Each API method takes a input parameter, and returns the service response and an error. The SDK provides methods for making the API call in multiple ways. In this list we'll use the S3 ListObjects API as an example for the different ways of making API requests. ListObjects - Base API operation that will make the API request to the service. ListObjectsRequest - API methods suffixed with Request will construct the API request, but not send it. This is also helpful when you want to get a presigned URL for a request, and share the presigned URL instead of your application making the request directly. ListObjectsPages - Same as the base API operation, but uses a callback to automatically handle pagination of the API's response. ListObjectsWithContext - Same as base API operation, but adds support for the Context pattern. This is helpful for controlling the canceling of in flight requests. See the Go standard library context package for more information. This method also takes request package's Option functional options as the variadic argument for modifying how the request will be made, or extracting information from the raw HTTP response. ListObjectsPagesWithContext - same as ListObjectsPages, but adds support for the Context pattern. Similar to ListObjectsWithContext this method also takes the request package's Option function option types as the variadic argument. In addition to the API operations the SDK also includes several higher level methods that abstract checking for and waiting for an AWS resource to be in a desired state. In this list we'll use WaitUntilBucketExists to demonstrate the different forms of waiters. WaitUntilBucketExists. - Method to make API request to query an AWS service for a resource's state. Will return successfully when that state is accomplished. WaitUntilBucketExistsWithContext - Same as WaitUntilBucketExists, but adds support for the Context pattern. In addition these methods take request package's WaiterOptions to configure the waiter, and how underlying request will be made by the SDK. The API method will document which error codes the service might return for the operation. These errors will also be available as const strings prefixed with "ErrCode" in the service client's package. If there are no errors listed in the API's SDK documentation you'll need to consult the AWS service's API documentation for the errors that could be returned. Pagination helper methods are suffixed with "Pages", and provide the functionality needed to round trip API page requests. Pagination methods take a callback function that will be called for each page of the API's response. Waiter helper methods provide the functionality to wait for an AWS resource state. These methods abstract the logic needed to to check the state of an AWS resource, and wait until that resource is in a desired state. The waiter will block until the resource is in the state that is desired, an error occurs, or the waiter times out. If a resource times out the error code returned will be request.WaiterResourceNotReadyErrorCode. This example shows a complete working Go file which will upload a file to S3 and use the Context pattern to implement timeout logic that will cancel the request if it takes too long. This example highlights how to use sessions, create a service client, make a request, handle the error, and process the response.