Package sdk is the official AWS SDK for the Go programming language. The AWS SDK for Go provides APIs and utilities that developers can use to build Go applications that use AWS services, such as Amazon Elastic Compute Cloud (Amazon EC2) and Amazon Simple Storage Service (Amazon S3). The SDK removes the complexity of coding directly against a web service interface. It hides a lot of the lower-level plumbing, such as authentication, request retries, and error handling. The SDK also includes helpful utilities on top of the AWS APIs that add additional capabilities and functionality. For example, the Amazon S3 Download and Upload Manager will automatically split up large objects into multiple parts and transfer them concurrently. See the s3manager package documentation for more information. https://docs.aws.amazon.com/sdk-for-go/api/service/s3/s3manager/ Checkout the Getting Started Guide and API Reference Docs detailed the SDK's components and details on each AWS client the SDK supports. The Getting Started Guide provides examples and detailed description of how to get setup with the SDK. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/welcome.html The API Reference Docs include a detailed breakdown of the SDK's components such as utilities and AWS clients. Use this as a reference of the Go types included with the SDK, such as AWS clients, API operations, and API parameters. https://docs.aws.amazon.com/sdk-for-go/api/ The SDK is composed of two main components, SDK core, and service clients. The SDK core packages are all available under the aws package at the root of the SDK. Each client for a supported AWS service is available within its own package under the service folder at the root of the SDK. aws - SDK core, provides common shared types such as Config, Logger, and utilities to make working with API parameters easier. awserr - Provides the error interface that the SDK will use for all errors that occur in the SDK's processing. This includes service API response errors as well. The Error type is made up of a code and message. Cast the SDK's returned error type to awserr.Error and call the Code method to compare returned error to specific error codes. See the package's documentation for additional values that can be extracted such as RequestId. credentials - Provides the types and built in credentials providers the SDK will use to retrieve AWS credentials to make API requests with. Nested under this folder are also additional credentials providers such as stscreds for assuming IAM roles, and ec2rolecreds for EC2 Instance roles. endpoints - Provides the AWS Regions and Endpoints metadata for the SDK. Use this to lookup AWS service endpoint information such as which services are in a region, and what regions a service is in. Constants are also provided for all region identifiers, e.g UsWest2RegionID for "us-west-2". session - Provides initial default configuration, and load configuration from external sources such as environment and shared credentials file. request - Provides the API request sending, and retry logic for the SDK. This package also includes utilities for defining your own request retryer, and configuring how the SDK processes the request. service - Clients for AWS services. All services supported by the SDK are available under this folder. The SDK includes the Go types and utilities you can use to make requests to AWS service APIs. Within the service folder at the root of the SDK you'll find a package for each AWS service the SDK supports. All service clients follows a common pattern of creation and usage. When creating a client for an AWS service you'll first need to have a Session value constructed. The Session provides shared configuration that can be shared between your service clients. When service clients are created you can pass in additional configuration via the aws.Config type to override configuration provided by in the Session to create service client instances with custom configuration. Once the service's client is created you can use it to make API requests the AWS service. These clients are safe to use concurrently. In the AWS SDK for Go, you can configure settings for service clients, such as the log level and maximum number of retries. Most settings are optional; however, for each service client, you must specify a region and your credentials. The SDK uses these values to send requests to the correct AWS region and sign requests with the correct credentials. You can specify these values as part of a session or as environment variables. See the SDK's configuration guide for more information. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html See the session package documentation for more information on how to use Session with the SDK. https://docs.aws.amazon.com/sdk-for-go/api/aws/session/ See the Config type in the aws package for more information on configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config When using the SDK you'll generally need your AWS credentials to authenticate with AWS services. The SDK supports multiple methods of supporting these credentials. By default the SDK will source credentials automatically from its default credential chain. See the session package for more information on this chain, and how to configure it. The common items in the credential chain are the following: Environment Credentials - Set of environment variables that are useful when sub processes are created for specific roles. Shared Credentials file (~/.aws/credentials) - This file stores your credentials based on a profile name and is useful for local development. EC2 Instance Role Credentials - Use EC2 Instance Role to assign credentials to application running on an EC2 instance. This removes the need to manage credential files in production. Credentials can be configured in code as well by setting the Config's Credentials value to a custom provider or using one of the providers included with the SDK to bypass the default credential chain and use a custom one. This is helpful when you want to instruct the SDK to only use a specific set of credentials or providers. This example creates a credential provider for assuming an IAM role, "myRoleARN" and configures the S3 service client to use that role for API requests. See the credentials package documentation for more information on credential providers included with the SDK, and how to customize the SDK's usage of credentials. https://docs.aws.amazon.com/sdk-for-go/api/aws/credentials The SDK has support for the shared configuration file (~/.aws/config). This support can be enabled by setting the environment variable, "AWS_SDK_LOAD_CONFIG=1", or enabling the feature in code when creating a Session via the Option's SharedConfigState parameter. In addition to the credentials you'll need to specify the region the SDK will use to make AWS API requests to. In the SDK you can specify the region either with an environment variable, or directly in code when a Session or service client is created. The last value specified in code wins if the region is specified multiple ways. To set the region via the environment variable set the "AWS_REGION" to the region you want to the SDK to use. Using this method to set the region will allow you to run your application in multiple regions without needing additional code in the application to select the region. The endpoints package includes constants for all regions the SDK knows. The values are all suffixed with RegionID. These values are helpful, because they reduce the need to type the region string manually. To set the region on a Session use the aws package's Config struct parameter Region to the AWS region you want the service clients created from the session to use. This is helpful when you want to create multiple service clients, and all of the clients make API requests to the same region. See the endpoints package for the AWS Regions and Endpoints metadata. https://docs.aws.amazon.com/sdk-for-go/api/aws/endpoints/ In addition to setting the region when creating a Session you can also set the region on a per service client bases. This overrides the region of a Session. This is helpful when you want to create service clients in specific regions different from the Session's region. See the Config type in the aws package for more information and additional options such as setting the Endpoint, and other service client configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config Once the client is created you can make an API request to the service. Each API method takes a input parameter, and returns the service response and an error. The SDK provides methods for making the API call in multiple ways. In this list we'll use the S3 ListObjects API as an example for the different ways of making API requests. ListObjects - Base API operation that will make the API request to the service. ListObjectsRequest - API methods suffixed with Request will construct the API request, but not send it. This is also helpful when you want to get a presigned URL for a request, and share the presigned URL instead of your application making the request directly. ListObjectsPages - Same as the base API operation, but uses a callback to automatically handle pagination of the API's response. ListObjectsWithContext - Same as base API operation, but adds support for the Context pattern. This is helpful for controlling the canceling of in flight requests. See the Go standard library context package for more information. This method also takes request package's Option functional options as the variadic argument for modifying how the request will be made, or extracting information from the raw HTTP response. ListObjectsPagesWithContext - same as ListObjectsPages, but adds support for the Context pattern. Similar to ListObjectsWithContext this method also takes the request package's Option function option types as the variadic argument. In addition to the API operations the SDK also includes several higher level methods that abstract checking for and waiting for an AWS resource to be in a desired state. In this list we'll use WaitUntilBucketExists to demonstrate the different forms of waiters. WaitUntilBucketExists. - Method to make API request to query an AWS service for a resource's state. Will return successfully when that state is accomplished. WaitUntilBucketExistsWithContext - Same as WaitUntilBucketExists, but adds support for the Context pattern. In addition these methods take request package's WaiterOptions to configure the waiter, and how underlying request will be made by the SDK. The API method will document which error codes the service might return for the operation. These errors will also be available as const strings prefixed with "ErrCode" in the service client's package. If there are no errors listed in the API's SDK documentation you'll need to consult the AWS service's API documentation for the errors that could be returned. Pagination helper methods are suffixed with "Pages", and provide the functionality needed to round trip API page requests. Pagination methods take a callback function that will be called for each page of the API's response. Waiter helper methods provide the functionality to wait for an AWS resource state. These methods abstract the logic needed to to check the state of an AWS resource, and wait until that resource is in a desired state. The waiter will block until the resource is in the state that is desired, an error occurs, or the waiter times out. If a resource times out the error code returned will be request.WaiterResourceNotReadyErrorCode. This example shows a complete working Go file which will upload a file to S3 and use the Context pattern to implement timeout logic that will cancel the request if it takes too long. This example highlights how to use sessions, create a service client, make a request, handle the error, and process the response.
Package iris implements the highest realistic performance, easy to learn Go web framework. Iris provides a beautifully expressive and easy to use foundation for your next website, API, or distributed app. Low-level handlers compatible with `net/http` and high-level fastest MVC implementation and handlers dependency injection. Easy to learn for new gophers and advanced features for experienced, it goes as far as you dive into it! Source code and other details for the project are available at GitHub: 12.2.11 The only requirement is the Go Programming Language, at least version 1.22. Wiki: Examples: Middleware: Home Page:
Package gofpdf implements a PDF document generator with high level support for text, drawing and images. - UTF-8 support - Choice of measurement unit, page format and margins - Page header and footer management - Automatic page breaks, line breaks, and text justification - Inclusion of JPEG, PNG, GIF, TIFF and basic path-only SVG images - Colors, gradients and alpha channel transparency - Outline bookmarks - Internal and external links - TrueType, Type1 and encoding support - Page compression - Lines, Bézier curves, arcs, and ellipses - Rotation, scaling, skewing, translation, and mirroring - Clipping - Document protection - Layers - Templates - Barcodes - Charting facility - Import PDFs as templates gofpdf has no dependencies other than the Go standard library. All tests pass on Linux, Mac and Windows platforms. gofpdf supports UTF-8 TrueType fonts and “right-to-left” languages. Note that Chinese, Japanese, and Korean characters may not be included in many general purpose fonts. For these languages, a specialized font (for example, NotoSansSC for simplified Chinese) can be used. Also, support is provided to automatically translate UTF-8 runes to code page encodings for languages that have fewer than 256 glyphs. This repository will not be maintained, at least for some unknown duration. But it is hoped that gofpdf has a bright future in the open source world. Due to Go’s promise of compatibility, gofpdf should continue to function without modification for a longer time than would be the case with many other languages. Forks should be based on the last viable commit. Tools such as active-forks can be used to select a fork that looks promising for your needs. If a particular fork looks like it has taken the lead in attracting followers, this README will be updated to point people in that direction. The efforts of all contributors to this project have been deeply appreciated. Best wishes to all of you. To install the package on your system, run Later, to receive updates, run The following Go code generates a simple PDF file. See the functions in the fpdf_test.go file (shown as examples in this documentation) for more advanced PDF examples. If an error occurs in an Fpdf method, an internal error field is set. After this occurs, Fpdf method calls typically return without performing any operations and the error state is retained. This error management scheme facilitates PDF generation since individual method calls do not need to be examined for failure; it is generally sufficient to wait until after Output() is called. For the same reason, if an error occurs in the calling application during PDF generation, it may be desirable for the application to transfer the error to the Fpdf instance by calling the SetError() method or the SetErrorf() method. At any time during the life cycle of the Fpdf instance, the error state can be determined with a call to Ok() or Err(). The error itself can be retrieved with a call to Error(). This package is a relatively straightforward translation from the original FPDF library written in PHP (despite the caveat in the introduction to Effective Go). The API names have been retained even though the Go idiom would suggest otherwise (for example, pdf.GetX() is used rather than simply pdf.X()). The similarity of the two libraries makes the original FPDF website a good source of information. It includes a forum and FAQ. However, some internal changes have been made. Page content is built up using buffers (of type bytes.Buffer) rather than repeated string concatenation. Errors are handled as explained above rather than panicking. Output is generated through an interface of type io.Writer or io.WriteCloser. A number of the original PHP methods behave differently based on the type of the arguments that are passed to them; in these cases additional methods have been exported to provide similar functionality. Font definition files are produced in JSON rather than PHP. A side effect of running go test ./... is the production of a number of example PDFs. These can be found in the gofpdf/pdf directory after the tests complete. Please note that these examples run in the context of a test. In order run an example as a standalone application, you’ll need to examine fpdf_test.go for some helper routines, for example exampleFilename() and summary(). Example PDFs can be compared with reference copies in order to verify that they have been generated as expected. This comparison will be performed if a PDF with the same name as the example PDF is placed in the gofpdf/pdf/reference directory and if the third argument to ComparePDFFiles() in internal/example/example.go is true. (By default it is false.) The routine that summarizes an example will look for this file and, if found, will call ComparePDFFiles() to check the example PDF for equality with its reference PDF. If differences exist between the two files they will be printed to standard output and the test will fail. If the reference file is missing, the comparison is considered to succeed. In order to successfully compare two PDFs, the placement of internal resources must be consistent and the internal creation timestamps must be the same. To do this, the methods SetCatalogSort() and SetCreationDate() need to be called for both files. This is done automatically for all examples. Nothing special is required to use the standard PDF fonts (courier, helvetica, times, zapfdingbats) in your documents other than calling SetFont(). You should use AddUTF8Font() or AddUTF8FontFromBytes() to add a TrueType UTF-8 encoded font. Use RTL() and LTR() methods switch between “right-to-left” and “left-to-right” mode. In order to use a different non-UTF-8 TrueType or Type1 font, you will need to generate a font definition file and, if the font will be embedded into PDFs, a compressed version of the font file. This is done by calling the MakeFont function or using the included makefont command line utility. To create the utility, cd into the makefont subdirectory and run “go build”. This will produce a standalone executable named makefont. Select the appropriate encoding file from the font subdirectory and run the command as in the following example. In your PDF generation code, call AddFont() to load the font and, as with the standard fonts, SetFont() to begin using it. Most examples, including the package example, demonstrate this method. Good sources of free, open-source fonts include Google Fonts and DejaVu Fonts. The draw2d package is a two dimensional vector graphics library that can generate output in different forms. It uses gofpdf for its document production mode. gofpdf is a global community effort and you are invited to make it even better. If you have implemented a new feature or corrected a problem, please consider contributing your change to the project. A contribution that does not directly pertain to the core functionality of gofpdf should be placed in its own directory directly beneath the contrib directory. Here are guidelines for making submissions. Your change should - be compatible with the MIT License - be properly documented - be formatted with go fmt - include an example in fpdf_test.go if appropriate - conform to the standards of golint and go vet, that is, golint . and go vet . should not generate any warnings - not diminish test coverage Pull requests are the preferred means of accepting your changes. gofpdf is released under the MIT License. It is copyrighted by Kurt Jung and the contributors acknowledged below. This package’s code and documentation are closely derived from the FPDF library created by Olivier Plathey, and a number of font and image resources are copied directly from it. Bruno Michel has provided valuable assistance with the code. Drawing support is adapted from the FPDF geometric figures script by David Hernández Sanz. Transparency support is adapted from the FPDF transparency script by Martin Hall-May. Support for gradients and clipping is adapted from FPDF scripts by Andreas Würmser. Support for outline bookmarks is adapted from Olivier Plathey by Manuel Cornes. Layer support is adapted from Olivier Plathey. Support for transformations is adapted from the FPDF transformation script by Moritz Wagner and Andreas Würmser. PDF protection is adapted from the work of Klemen Vodopivec for the FPDF product. Lawrence Kesteloot provided code to allow an image’s extent to be determined prior to placement. Support for vertical alignment within a cell was provided by Stefan Schroeder. Ivan Daniluk generalized the font and image loading code to use the Reader interface while maintaining backward compatibility. Anthony Starks provided code for the Polygon function. Robert Lillack provided the Beziergon function and corrected some naming issues with the internal curve function. Claudio Felber provided implementations for dashed line drawing and generalized font loading. Stani Michiels provided support for multi-segment path drawing with smooth line joins, line join styles, enhanced fill modes, and has helped greatly with package presentation and tests. Templating is adapted by Marcus Downing from the FPDF_Tpl library created by Jan Slabon and Setasign. Jelmer Snoeck contributed packages that generate a variety of barcodes and help with registering images on the web. Jelmer Snoek and Guillermo Pascual augmented the basic HTML functionality with aligned text. Kent Quirk implemented backwards-compatible support for reading DPI from images that support it, and for setting DPI manually and then having it properly taken into account when calculating image size. Paulo Coutinho provided support for static embedded fonts. Dan Meyers added support for embedded JavaScript. David Fish added a generic alias-replacement function to enable, among other things, table of contents functionality. Andy Bakun identified and corrected a problem in which the internal catalogs were not sorted stably. Paul Montag added encoding and decoding functionality for templates, including images that are embedded in templates; this allows templates to be stored independently of gofpdf. Paul also added support for page boxes used in printing PDF documents. Wojciech Matusiak added supported for word spacing. Artem Korotkiy added support of UTF-8 fonts. Dave Barnes added support for imported objects and templates. Brigham Thompson added support for rounded rectangles. Joe Westcott added underline functionality and optimized image storage. Benoit KUGLER contributed support for rectangles with corners of unequal radius, modification times, and for file attachments and annotations. - Remove all legacy code page font support; use UTF-8 exclusively - Improve test coverage as reported by the coverage tool. Example demonstrates the generation of a simple PDF document. Note that since only core fonts are used (in this case Arial, a synonym for Helvetica), an empty string can be specified for the font directory in the call to New(). Note also that the example.Filename() and example.Summary() functions belong to a separate, internal package and are not part of the gofpdf library. If an error occurs at some point during the construction of the document, subsequent method calls exit immediately and the error is finally retrieved with the output call where it can be handled by the application.
Package beego provide a MVC framework beego: an open-source, high-performance, modular, full-stack web framework It is used for rapid development of RESTful APIs, web apps and backend services in Go. beego is inspired by Tornado, Sinatra and Flask with the added benefit of some Go-specific features such as interfaces and struct embedding. more information: http://beego.me
Package sso provides the API client, operations, and parameter types for AWS Single Sign-On. AWS IAM Identity Center (successor to AWS Single Sign-On) Portal is a web service that makes it easy for you to assign user access to IAM Identity Center resources such as the AWS access portal. Users can get AWS account applications and roles assigned to them and get federated into the application. Although AWS Single Sign-On was renamed, the sso and identitystore API namespaces will continue to retain their original name for backward compatibility purposes. For more information, see IAM Identity Center rename. This reference guide describes the IAM Identity Center Portal operations that you can call programatically and includes detailed information on data types and errors. AWS provides SDKs that consist of libraries and sample code for various programming languages and platforms, such as Java, Ruby, .Net, iOS, or Android. The SDKs provide a convenient way to create programmatic access to IAM Identity Center and other AWS services. For more information about the AWS SDKs, including how to download and install them, see Tools for Amazon Web Services.
Package ssooidc provides the API client, operations, and parameter types for AWS SSO OIDC. IAM Identity Center OpenID Connect (OIDC) is a web service that enables a client (such as CLI or a native application) to register with IAM Identity Center. The service also enables the client to fetch the user’s access token upon successful authentication and authorization with IAM Identity Center. IAM Identity Center uses the sso and identitystore API namespaces. Before you begin using this guide, we recommend that you first review the following important information about how the IAM Identity Center OIDC service works. The IAM Identity Center OIDC service currently implements only the portions of the OAuth 2.0 Device Authorization Grant standard (https://tools.ietf.org/html/rfc8628 ) that are necessary to enable single sign-on authentication with the CLI. With older versions of the CLI, the service only emits OIDC access tokens, so to obtain a new token, users must explicitly re-authenticate. To access the OIDC flow that supports token refresh and doesn’t require re-authentication, update to the latest CLI version (1.27.10 for CLI V1 and 2.9.0 for CLI V2) with support for OIDC token refresh and configurable IAM Identity Center session durations. For more information, see Configure Amazon Web Services access portal session duration. The access tokens provided by this service grant access to all Amazon Web Services account entitlements assigned to an IAM Identity Center user, not just a particular application. The documentation in this guide does not describe the mechanism to convert the access token into Amazon Web Services Auth (“sigv4”) credentials for use with IAM-protected Amazon Web Services service endpoints. For more information, see GetRoleCredentialsin the IAM Identity Center Portal API Reference Guide. For general information about IAM Identity Center, see What is IAM Identity Center? in the IAM Identity Center User Guide.
Package buffalo is a Go web development eco-system, designed to make your life easier. Buffalo helps you to generate a web project that already has everything from front-end (JavaScript, SCSS, etc.) to back-end (database, routing, etc.) already hooked up and ready to run. From there it provides easy APIs to build your web application quickly in Go. Buffalo **isn't just a framework**, it's a holistic web development environment and project structure that **lets developers get straight to the business** of, well, building their business.
Package ecr provides the API client, operations, and parameter types for Amazon EC2 Container Registry. Amazon Elastic Container Registry (Amazon ECR) is a managed container image registry service. Customers can use the familiar Docker CLI, or their preferred client, to push, pull, and manage images. Amazon ECR provides a secure, scalable, and reliable registry for your Docker or Open Container Initiative (OCI) images. Amazon ECR supports private repositories with resource-based permissions using IAM so that specific users or Amazon EC2 instances can access repositories and images. Amazon ECR has service endpoints in each supported Region. For more information, see Amazon ECR endpointsin the Amazon Web Services General Reference.
Package route53 provides the API client, operations, and parameter types for Amazon Route 53. Amazon Route 53 is a highly available and scalable Domain Name System (DNS) web service. You can use Route 53 to: For more information, see How domain registration works. For more information, see How internet traffic is routed to your website or web application. For more information, see How Route 53 checks the health of your resources.
Package kms provides the API client, operations, and parameter types for AWS Key Management Service. Key Management Service (KMS) is an encryption and key management web service. This guide describes the KMS operations that you can call programmatically. For general information about KMS, see the Key Management Service Developer Guide. KMS has replaced the term customer master key (CMK) with KMS key and KMS key. The concept has not changed. To prevent breaking changes, KMS is keeping some variations of this term. Amazon Web Services provides SDKs that consist of libraries and sample code for various programming languages and platforms (Java, Ruby, .Net, macOS, Android, etc.). The SDKs provide a convenient way to create programmatic access to KMS and other Amazon Web Services services. For example, the SDKs take care of tasks such as signing requests (see below), managing errors, and retrying requests automatically. For more information about the Amazon Web Services SDKs, including how to download and install them, see Tools for Amazon Web Services. We recommend that you use the Amazon Web Services SDKs to make programmatic API calls to KMS. If you need to use FIPS 140-2 validated cryptographic modules when communicating with Amazon Web Services, use the FIPS endpoint in your preferred Amazon Web Services Region. For more information about the available FIPS endpoints, see Service endpointsin the Key Management Service topic of the Amazon Web Services General Reference. All KMS API calls must be signed and be transmitted using Transport Layer Security (TLS). KMS recommends you always use the latest supported TLS version. Clients must also support cipher suites with Perfect Forward Secrecy (PFS) such as Ephemeral Diffie-Hellman (DHE) or Elliptic Curve Ephemeral Diffie-Hellman (ECDHE). Most modern systems such as Java 7 and later support these modes. Requests must be signed using an access key ID and a secret access key. We strongly recommend that you do not use your Amazon Web Services account root access key ID and secret access key for everyday work. You can use the access key ID and secret access key for an IAM user or you can use the Security Token Service (STS) to generate temporary security credentials and use those to sign requests. All KMS requests must be signed with Signature Version 4. KMS supports CloudTrail, a service that logs Amazon Web Services API calls and related events for your Amazon Web Services account and delivers them to an Amazon S3 bucket that you specify. By using the information collected by CloudTrail, you can determine what requests were made to KMS, who made the request, when it was made, and so on. To learn more about CloudTrail, including how to turn it on and find your log files, see the CloudTrail User Guide. For more information about credentials and request signing, see the following: Amazon Web Services Security Credentials Temporary Security Credentials Signature Version 4 Signing Process Of the API operations discussed in this guide, the following will prove the most useful for most applications. You will likely perform operations other than these, such as creating keys and assigning policies, by using the console.
Package cloudwatch provides the API client, operations, and parameter types for Amazon CloudWatch. Amazon CloudWatch monitors your Amazon Web Services (Amazon Web Services) resources and the applications you run on Amazon Web Services in real time. You can use CloudWatch to collect and track metrics, which are the variables you want to measure for your resources and applications. CloudWatch alarms send notifications or automatically change the resources you are monitoring based on rules that you define. For example, you can monitor the CPU usage and disk reads and writes of your Amazon EC2 instances. Then, use this data to determine whether you should launch additional instances to handle increased load. You can also use this data to stop under-used instances to save money. In addition to monitoring the built-in metrics that come with Amazon Web Services, you can monitor your own custom metrics. With CloudWatch, you gain system-wide visibility into resource utilization, application performance, and operational health.
Package dynamodb provides the API client, operations, and parameter types for Amazon DynamoDB. Amazon DynamoDB is a fully managed NoSQL database service that provides fast and predictable performance with seamless scalability. DynamoDB lets you offload the administrative burdens of operating and scaling a distributed database, so that you don't have to worry about hardware provisioning, setup and configuration, replication, software patching, or cluster scaling. With DynamoDB, you can create database tables that can store and retrieve any amount of data, and serve any level of request traffic. You can scale up or scale down your tables' throughput capacity without downtime or performance degradation, and use the Amazon Web Services Management Console to monitor resource utilization and performance metrics. DynamoDB automatically spreads the data and traffic for your tables over a sufficient number of servers to handle your throughput and storage requirements, while maintaining consistent and fast performance. All of your data is stored on solid state disks (SSDs) and automatically replicated across multiple Availability Zones in an Amazon Web Services Region, providing built-in high availability and data durability.
Package sqs provides the API client, operations, and parameter types for Amazon Simple Queue Service. Welcome to the Amazon SQS API Reference. Amazon SQS is a reliable, highly-scalable hosted queue for storing messages as they travel between applications or microservices. Amazon SQS moves data between distributed application components and helps you decouple these components. For information on the permissions you need to use this API, see Identity and access management in the Amazon SQS Developer Guide. You can use Amazon Web Services SDKs to access Amazon SQS using your favorite programming language. The SDKs perform tasks such as the following automatically: Cryptographically sign your service requests Retry requests Handle error responses Amazon SQS Product Page Making API Requests Amazon SQS Message Attributes Amazon SQS Dead-Letter Queues Amazon SQS in the Command Line Interface Regions and Endpoints
Package ssm provides the API client, operations, and parameter types for Amazon Simple Systems Manager (SSM). Amazon Web Services Systems Manager is the operations hub for your Amazon Web Services applications and resources and a secure end-to-end management solution for hybrid cloud environments that enables safe and secure operations at scale. This reference is intended to be used with the Amazon Web Services Systems Manager User Guide. To get started, see Setting up Amazon Web Services Systems Manager. Related resources For information about each of the capabilities that comprise Systems Manager, see Systems Manager capabilitiesin the Amazon Web Services Systems Manager User Guide. For details about predefined runbooks for Automation, a capability of Amazon Web Services Systems Manager, see the Systems Manager Automation runbook reference. For information about AppConfig, a capability of Systems Manager, see the AppConfig User Guide and the AppConfig API Reference. For information about Incident Manager, a capability of Systems Manager, see the Systems Manager Incident Manager User Guideand the Systems Manager Incident Manager API Reference.
Package secretsmanager provides the API client, operations, and parameter types for AWS Secrets Manager. Amazon Web Services Secrets Manager provides a service to enable you to store, manage, and retrieve, secrets. This guide provides descriptions of the Secrets Manager API. For more information about using this service, see the Amazon Web Services Secrets Manager User Guide. This version of the Secrets Manager API Reference documents the Secrets Manager API version 2017-10-17. For a list of endpoints, see Amazon Web Services Secrets Manager endpoints. We welcome your feedback. Send your comments to awssecretsmanager-feedback@amazon.com, or post your feedback and questions in the Amazon Web Services Secrets Manager Discussion Forum. For more information about the Amazon Web Services Discussion Forums, see Forums Help. Amazon Web Services Secrets Manager supports Amazon Web Services CloudTrail, a service that records Amazon Web Services API calls for your Amazon Web Services account and delivers log files to an Amazon S3 bucket. By using information that's collected by Amazon Web Services CloudTrail, you can determine the requests successfully made to Secrets Manager, who made the request, when it was made, and so on. For more about Amazon Web Services Secrets Manager and support for Amazon Web Services CloudTrail, see Logging Amazon Web Services Secrets Manager Events with Amazon Web Services CloudTrailin the Amazon Web Services Secrets Manager User Guide. To learn more about CloudTrail, including enabling it and find your log files, see the Amazon Web Services CloudTrail User Guide.
Package sns provides the API client, operations, and parameter types for Amazon Simple Notification Service. Amazon Simple Notification Service (Amazon SNS) is a web service that enables you to build distributed web-enabled applications. Applications can use Amazon SNS to easily push real-time notification messages to interested subscribers over multiple delivery protocols. For more information about this product see the Amazon SNS product page. For detailed information about Amazon SNS features and their associated API calls, see the Amazon SNS Developer Guide. For information on the permissions you need to use this API, see Identity and access management in Amazon SNS in the Amazon SNS Developer Guide. We also provide SDKs that enable you to access Amazon SNS from your preferred programming language. The SDKs contain functionality that automatically takes care of tasks such as: cryptographically signing your service requests, retrying requests, and handling error responses. For a list of available SDKs, go to Tools for Amazon Web Services.
Package cloudwatchlogs provides the API client, operations, and parameter types for Amazon CloudWatch Logs. You can use Amazon CloudWatch Logs to monitor, store, and access your log files from EC2 instances, CloudTrail, and other sources. You can then retrieve the associated log data from CloudWatch Logs using the CloudWatch console. Alternatively, you can use CloudWatch Logs commands in the Amazon Web Services CLI, CloudWatch Logs API, or CloudWatch Logs SDK. You can use CloudWatch Logs to: Monitor logs from EC2 instances in real time: You can use CloudWatch Logs to monitor applications and systems using log data. For example, CloudWatch Logs can track the number of errors that occur in your application logs. Then, it can send you a notification whenever the rate of errors exceeds a threshold that you specify. CloudWatch Logs uses your log data for monitoring so no code changes are required. For example, you can monitor application logs for specific literal terms (such as "NullReferenceException"). You can also count the number of occurrences of a literal term at a particular position in log data (such as "404" status codes in an Apache access log). When the term you are searching for is found, CloudWatch Logs reports the data to a CloudWatch metric that you specify. Monitor CloudTrail logged events: You can create alarms in CloudWatch and receive notifications of particular API activity as captured by CloudTrail. You can use the notification to perform troubleshooting. Archive log data: You can use CloudWatch Logs to store your log data in highly durable storage. You can change the log retention setting so that any log events earlier than this setting are automatically deleted. The CloudWatch Logs agent helps to quickly send both rotated and non-rotated log data off of a host and into the log service. You can then access the raw log data when you need it.
Package iam provides the API client, operations, and parameter types for AWS Identity and Access Management. Identity and Access Management (IAM) is a web service for securely controlling access to Amazon Web Services services. With IAM, you can centrally manage users, security credentials such as access keys, and permissions that control which Amazon Web Services resources users and applications can access. For more information about IAM, see Identity and Access Management (IAM)and the Identity and Access Management User Guide.
Package lambda provides the API client, operations, and parameter types for AWS Lambda. Lambda is a compute service that lets you run code without provisioning or managing servers. Lambda runs your code on a high-availability compute infrastructure and performs all of the administration of the compute resources, including server and operating system maintenance, capacity provisioning and automatic scaling, code monitoring and logging. With Lambda, you can run code for virtually any type of application or backend service. For more information about the Lambda service, see What is Lambdain the Lambda Developer Guide. The Lambda API Reference provides information about each of the API methods, including details about the parameters in each API request and response. You can use Software Development Kits (SDKs), Integrated Development Environment (IDE) Toolkits, and command line tools to access the API. For installation instructions, see Tools for Amazon Web Services. For a list of Region-specific endpoints that Lambda supports, see Lambda endpoints and quotas in the Amazon Web Services General Reference.. When making the API calls, you will need to authenticate your request by providing a signature. Lambda supports signature version 4. For more information, see Signature Version 4 signing processin the Amazon Web Services General Reference.. Because Amazon Web Services SDKs use the CA certificates from your computer, changes to the certificates on the Amazon Web Services servers can cause connection failures when you attempt to use an SDK. You can prevent these failures by keeping your computer's CA certificates and operating system up-to-date. If you encounter this issue in a corporate environment and do not manage your own computer, you might need to ask an administrator to assist with the update process. The following list shows minimum operating system and Java versions: Microsoft Windows versions that have updates from January 2005 or later installed contain at least one of the required CAs in their trust list. Mac OS X 10.4 with Java for Mac OS X 10.4 Release 5 (February 2007), Mac OS X 10.5 (October 2007), and later versions contain at least one of the required CAs in their trust list. Red Hat Enterprise Linux 5 (March 2007), 6, and 7 and CentOS 5, 6, and 7 all contain at least one of the required CAs in their default trusted CA list. Java 1.4.2_12 (May 2006), 5 Update 2 (March 2005), and all later versions, including Java 6 (December 2006), 7, and 8, contain at least one of the required CAs in their default trusted CA list. When accessing the Lambda management console or Lambda API endpoints, whether through browsers or programmatically, you will need to ensure your client machines support any of the following CAs: Amazon Root CA 1 Starfield Services Root Certificate Authority - G2 Starfield Class 2 Certification Authority Root certificates from the first two authorities are available from Amazon trust services, but keeping your computer up-to-date is the more straightforward solution. To learn more about ACM-provided certificates, see Amazon Web Services Certificate Manager FAQs.
Package rds provides the API client, operations, and parameter types for Amazon Relational Database Service. Amazon Relational Database Service (Amazon RDS) is a web service that makes it easier to set up, operate, and scale a relational database in the cloud. It provides cost-efficient, resizeable capacity for an industry-standard relational database and manages common database administration tasks, freeing up developers to focus on what makes their applications and businesses unique. Amazon RDS gives you access to the capabilities of a MySQL, MariaDB, PostgreSQL, Microsoft SQL Server, Oracle, Db2, or Amazon Aurora database server. These capabilities mean that the code, applications, and tools you already use today with your existing databases work with Amazon RDS without modification. Amazon RDS automatically backs up your database and maintains the database software that powers your DB instance. Amazon RDS is flexible: you can scale your DB instance's compute resources and storage capacity to meet your application's demand. As with all Amazon Web Services, there are no up-front investments, and you pay only for the resources you use. This interface reference for Amazon RDS contains documentation for a programming or command line interface you can use to manage Amazon RDS. Amazon RDS is asynchronous, which means that some interfaces might require techniques such as polling or callback functions to determine when a command has been applied. In this reference, the parameter descriptions indicate whether a command is applied immediately, on the next instance reboot, or during the maintenance window. The reference structure is as follows, and we list following some related topics from the user guide. Amazon RDS API Reference For the alphabetical list of API actions, see API Actions. For the alphabetical list of data types, see Data Types. For a list of common query parameters, see Common Parameters. For descriptions of the error codes, see Common Errors. Amazon RDS User Guide For a summary of the Amazon RDS interfaces, see Available RDS Interfaces. For more information about how to use the Query API, see Using the Query API.
Package eks provides the API client, operations, and parameter types for Amazon Elastic Kubernetes Service. Amazon Elastic Kubernetes Service (Amazon EKS) is a managed service that makes it easy for you to run Kubernetes on Amazon Web Services without needing to setup or maintain your own Kubernetes control plane. Kubernetes is an open-source system for automating the deployment, scaling, and management of containerized applications. Amazon EKS runs up-to-date versions of the open-source Kubernetes software, so you can use all the existing plugins and tooling from the Kubernetes community. Applications running on Amazon EKS are fully compatible with applications running on any standard Kubernetes environment, whether running in on-premises data centers or public clouds. This means that you can easily migrate any standard Kubernetes application to Amazon EKS without any code modification required.
Package cloudtrail provides the API client, operations, and parameter types for AWS CloudTrail. This is the CloudTrail API Reference. It provides descriptions of actions, data types, common parameters, and common errors for CloudTrail. CloudTrail is a web service that records Amazon Web Services API calls for your Amazon Web Services account and delivers log files to an Amazon S3 bucket. The recorded information includes the identity of the user, the start time of the Amazon Web Services API call, the source IP address, the request parameters, and the response elements returned by the service. As an alternative to the API, you can use one of the Amazon Web Services SDKs, which consist of libraries and sample code for various programming languages and platforms (Java, Ruby, .NET, iOS, Android, etc.). The SDKs provide programmatic access to CloudTrail. For example, the SDKs handle cryptographically signing requests, managing errors, and retrying requests automatically. For more information about the Amazon Web Services SDKs, including how to download and install them, see Tools to Build on Amazon Web Services. See the CloudTrail User Guide for information about the data that is included with each Amazon Web Services API call listed in the log files.
Package apigateway provides the API client, operations, and parameter types for Amazon API Gateway. Amazon API Gateway helps developers deliver robust, secure, and scalable mobile and web application back ends. API Gateway allows developers to securely connect mobile and web applications to APIs that run on Lambda, Amazon EC2, or other publicly addressable web services that are hosted outside of AWS.
Package cloudformation provides the API client, operations, and parameter types for AWS CloudFormation. CloudFormation allows you to create and manage Amazon Web Services infrastructure deployments predictably and repeatedly. You can use CloudFormation to leverage Amazon Web Services products, such as Amazon Elastic Compute Cloud, Amazon Elastic Block Store, Amazon Simple Notification Service, Elastic Load Balancing, and Auto Scaling to build highly reliable, highly scalable, cost-effective applications without creating or configuring the underlying Amazon Web Services infrastructure. With CloudFormation, you declare all your resources and dependencies in a template file. The template defines a collection of resources as a single unit called a stack. CloudFormation creates and deletes all member resources of the stack together and manages all dependencies between the resources for you. For more information about CloudFormation, see the CloudFormation product page. CloudFormation makes use of other Amazon Web Services products. If you need additional technical information about a specific Amazon Web Services product, you can find the product's technical documentation at docs.aws.amazon.com.
Package goji provides an out-of-box web server with reasonable defaults. Example: This package exists purely as a convenience to programmers who want to get started as quickly as possible. It draws almost all of its code from goji's subpackages, the most interesting of which is goji/web, and where most of the documentation for the web framework lives. A side effect of this package's ease-of-use is the fact that it is opinionated. If you don't like (or have outgrown) its opinions, it should be straightforward to use the APIs of goji's subpackages to reimplement things to your liking. Both methods of using this library are equally well supported. Goji requires Go 1.2 or newer.
Package elasticache provides the API client, operations, and parameter types for Amazon ElastiCache. Amazon ElastiCache is a web service that makes it easier to set up, operate, and scale a distributed cache in the cloud. With ElastiCache, customers get all of the benefits of a high-performance, in-memory cache with less of the administrative burden involved in launching and managing a distributed cache. The service makes setup, scaling, and cluster failure handling much simpler than in a self-managed cache deployment. In addition, through integration with Amazon CloudWatch, customers get enhanced visibility into the key performance statistics associated with their cache and can receive alarms if a part of their cache runs hot.
Package efs provides the API client, operations, and parameter types for Amazon Elastic File System. Amazon Elastic File System (Amazon EFS) provides simple, scalable file storage for use with Amazon EC2 Linux and Mac instances in the Amazon Web Services Cloud. With Amazon EFS, storage capacity is elastic, growing and shrinking automatically as you add and remove files, so that your applications have the storage they need, when they need it. For more information, see the Amazon Elastic File System API Referenceand the Amazon Elastic File System User Guide.
Package workspaces provides the API client, operations, and parameter types for Amazon WorkSpaces. Amazon WorkSpaces enables you to provision virtual, cloud-based Microsoft Windows or Amazon Linux desktops for your users, known as WorkSpaces. WorkSpaces eliminates the need to procure and deploy hardware or install complex software. You can quickly add or remove users as your needs change. Users can access their virtual desktops from multiple devices or web browsers. This API Reference provides detailed information about the actions, data types, parameters, and errors of the WorkSpaces service. For more information about the supported Amazon Web Services Regions, endpoints, and service quotas of the Amazon WorkSpaces service, see WorkSpaces endpoints and quotasin the Amazon Web Services General Reference. You can also manage your WorkSpaces resources using the WorkSpaces console, Command Line Interface (CLI), and SDKs. For more information about administering WorkSpaces, see the Amazon WorkSpaces Administration Guide. For more information about using the Amazon WorkSpaces client application or web browser to access provisioned WorkSpaces, see the Amazon WorkSpaces User Guide. For more information about using the CLI to manage your WorkSpaces resources, see the WorkSpaces section of the CLI Reference.
Package securityhub provides the API client, operations, and parameter types for AWS SecurityHub. Security Hub provides you with a comprehensive view of your security state in Amazon Web Services and helps you assess your Amazon Web Services environment against security industry standards and best practices. Security Hub collects security data across Amazon Web Services accounts, Amazon Web Servicesservices, and supported third-party products and helps you analyze your security trends and identify the highest priority security issues. To help you manage the security state of your organization, Security Hub supports multiple security standards. These include the Amazon Web Services Foundational Security Best Practices (FSBP) standard developed by Amazon Web Services, and external compliance frameworks such as the Center for Internet Security (CIS), the Payment Card Industry Data Security Standard (PCI DSS), and the National Institute of Standards and Technology (NIST). Each standard includes several security controls, each of which represents a security best practice. Security Hub runs checks against security controls and generates control findings to help you assess your compliance against security best practices. In addition to generating control findings, Security Hub also receives findings from other Amazon Web Servicesservices, such as Amazon GuardDuty and Amazon Inspector, and supported third-party products. This gives you a single pane of glass into a variety of security-related issues. You can also send Security Hub findings to other Amazon Web Servicesservices and supported third-party products. Security Hub offers automation features that help you triage and remediate security issues. For example, you can use automation rules to automatically update critical findings when a security check fails. You can also leverage the integration with Amazon EventBridge to trigger automatic responses to specific findings. This guide, the Security Hub API Reference, provides information about the Security Hub API. This includes supported resources, HTTP methods, parameters, and schemas. If you're new to Security Hub, you might find it helpful to also review the Security Hub User Guide. The user guide explains key concepts and provides procedures that demonstrate how to use Security Hub features. It also provides information about topics such as integrating Security Hub with other Amazon Web Servicesservices. In addition to interacting with Security Hub by making calls to the Security Hub API, you can use a current version of an Amazon Web Services command line tool or SDK. Amazon Web Services provides tools and SDKs that consist of libraries and sample code for various languages and platforms, such as PowerShell, Java, Go, Python, C++, and .NET. These tools and SDKs provide convenient, programmatic access to Security Hub and other Amazon Web Servicesservices . They also handle tasks such as signing requests, managing errors, and retrying requests automatically. For information about installing and using the Amazon Web Services tools and SDKs, see Tools to Build on Amazon Web Services. With the exception of operations that are related to central configuration, Security Hub API requests are executed only in the Amazon Web Services Region that is currently active or in the specific Amazon Web Services Region that you specify in your request. Any configuration or settings change that results from the operation is applied only to that Region. To make the same change in other Regions, call the same API operation in each Region in which you want to apply the change. When you use central configuration, API requests for enabling Security Hub, standards, and controls are executed in the home Region and all linked Regions. For a list of central configuration operations, see the Central configuration terms and conceptssection of the Security Hub User Guide. The following throttling limits apply to Security Hub API operations. BatchEnableStandards - RateLimit of 1 request per second. BurstLimit of 1 request per second. GetFindings - RateLimit of 3 requests per second. BurstLimit of 6 requests per second. BatchImportFindings - RateLimit of 10 requests per second. BurstLimit of 30 requests per second. BatchUpdateFindings - RateLimit of 10 requests per second. BurstLimit of 30 requests per second. UpdateStandardsControl - RateLimit of 1 request per second. BurstLimit of 5 requests per second. All other operations - RateLimit of 10 requests per second. BurstLimit of 30 requests per second.
Package cognitoidentityprovider provides the API client, operations, and parameter types for Amazon Cognito Identity Provider. With the Amazon Cognito user pools API, you can configure user pools and authenticate users. To authenticate users from third-party identity providers (IdPs) in this API, you can link IdP users to native user profiles. Learn more about the authentication and authorization of federated users at Adding user pool sign-in through a third partyand in the User pool federation endpoints and hosted UI reference. This API reference provides detailed information about API operations and object types in Amazon Cognito. Along with resource management operations, the Amazon Cognito user pools API includes classes of operations and authorization models for client-side and server-side authentication of users. You can interact with operations in the Amazon Cognito user pools API as any of the following subjects. An administrator who wants to configure user pools, app clients, users, groups, or other user pool functions. A server-side app, like a web application, that wants to use its Amazon Web Services privileges to manage, authenticate, or authorize a user. A client-side app, like a mobile app, that wants to make unauthenticated requests to manage, authenticate, or authorize a user. For more information, see Using the Amazon Cognito user pools API and user pool endpoints in the Amazon Cognito Developer Guide. With your Amazon Web Services SDK, you can build the logic to support operational flows in every use case for this API. You can also make direct REST API requests to Amazon Cognito user pools service endpoints. The following links can get you started with the CognitoIdentityProvider client in other supported Amazon Web Services SDKs. Amazon Web Services Command Line Interface Amazon Web Services SDK for .NET Amazon Web Services SDK for C++ Amazon Web Services SDK for Go Amazon Web Services SDK for Java V2 Amazon Web Services SDK for JavaScript Amazon Web Services SDK for PHP V3 Amazon Web Services SDK for Python Amazon Web Services SDK for Ruby V3 To get started with an Amazon Web Services SDK, see Tools to Build on Amazon Web Services. For example actions and scenarios, see Code examples for Amazon Cognito Identity Provider using Amazon Web Services SDKs.
Package accessanalyzer provides the API client, operations, and parameter types for Access Analyzer. Identity and Access Management Access Analyzer helps you to set, verify, and refine your IAM policies by providing a suite of capabilities. Its features include findings for external and unused access, basic and custom policy checks for validating policies, and policy generation to generate fine-grained policies. To start using IAM Access Analyzer to identify external or unused access, you first need to create an analyzer. External access analyzers help identify potential risks of accessing resources by enabling you to identify any resource policies that grant access to an external principal. It does this by using logic-based reasoning to analyze resource-based policies in your Amazon Web Services environment. An external principal can be another Amazon Web Services account, a root user, an IAM user or role, a federated user, an Amazon Web Services service, or an anonymous user. You can also use IAM Access Analyzer to preview public and cross-account access to your resources before deploying permissions changes. Unused access analyzers help identify potential identity access risks by enabling you to identify unused IAM roles, unused access keys, unused console passwords, and IAM principals with unused service and action-level permissions. Beyond findings, IAM Access Analyzer provides basic and custom policy checks to validate IAM policies before deploying permissions changes. You can use policy generation to refine permissions by attaching a policy generated using access activity logged in CloudTrail logs. This guide describes the IAM Access Analyzer operations that you can call programmatically. For general information about IAM Access Analyzer, see Identity and Access Management Access Analyzerin the IAM User Guide.
Package emr provides the API client, operations, and parameter types for Amazon EMR. Amazon EMR is a web service that makes it easier to process large amounts of data efficiently. Amazon EMR uses Hadoop processing combined with several Amazon Web Services services to do tasks such as web indexing, data mining, log file analysis, machine learning, scientific simulation, and data warehouse management.
Package acm provides the API client, operations, and parameter types for AWS Certificate Manager. You can use Certificate Manager (ACM) to manage SSL/TLS certificates for your Amazon Web Services-based websites and applications. For more information about using ACM, see the Certificate Manager User Guide.
Package svg generates SVG as defined by the Scalable Vector Graphics 1.1 Specification (<http://www.w3.org/TR/SVG11/>). Output goes to the specified io.Writer. Shapes, lines, text Paths Image and Gradients Transforms Filter Effects Metadata elements Usage: (assuming GOPATH is set) You can use godoc to browse the documentation from the command line: a minimal program, to generate SVG to standard output. Drawing in a web server: (http://localhost:2003/circle) Many functions use x, y to specify an object's location, and w, h to specify the object's width and height. Where applicable, a final optional argument specifies the style to be applied to the object. The style strings follow the SVG standard; name:value pairs delimited by semicolons, or a series of name="value" pairs. For example: `"fill:none; opacity:0.3"` or `fill="none" opacity="0.3"` (see: <http://www.w3.org/TR/SVG11/styling.html>) The SVG type: Most operations are methods on this type, specifying the destination io.Writer. The Offcolor type: is used to specify the offset, color, and opacity of stop colors in linear and radial gradients The Filterspec type: is used to specify inputs and results for filter effects Package svg provides an API for generating Scalable Vector Graphics (SVG)
Package organizations provides the API client, operations, and parameter types for AWS Organizations. Organizations is a web service that enables you to consolidate your multiple Amazon Web Services accounts into an organization and centrally manage your accounts and their resources. This guide provides descriptions of the Organizations operations. For more information about using this service, see the Organizations User Guide. We welcome your feedback. Send your comments to feedback-awsorganizations@amazon.com or post your feedback and questions in the Organizations support forum. For more information about the Amazon Web Services support forums, see Forums Help. For the current release of Organizations, specify the us-east-1 region for all Amazon Web Services API and CLI calls made from the commercial Amazon Web Services Regions outside of China. If calling from one of the Amazon Web Services Regions in China, then specify cn-northwest-1 . You can do this in the CLI by using these parameters and commands: --endpoint-url https://organizations.us-east-1.amazonaws.com (from commercial or --endpoint-url https://organizations.cn-northwest-1.amazonaws.com.cn (from aws configure set default.region us-east-1 (from commercial Amazon Web Services or aws configure set default.region cn-northwest-1 (from Amazon Web Services --region us-east-1 (from commercial Amazon Web Services Regions outside of or --region cn-northwest-1 (from Amazon Web Services Regions in China) Organizations supports CloudTrail, a service that records Amazon Web Services API calls for your Amazon Web Services account and delivers log files to an Amazon S3 bucket. By using information collected by CloudTrail, you can determine which requests the Organizations service received, who made the request and when, and so on. For more about Organizations and its support for CloudTrail, see Logging Organizations API calls with CloudTrailin the Organizations User Guide. To learn more about CloudTrail, including how to turn it on and find your log files, see the CloudTrail User Guide.
Package httpcache provides a http.RoundTripper implementation that works as a mostly RFC-compliant cache for http responses. It is only suitable for use as a 'private' cache (i.e. for a web-browser or an API-client and not for a shared proxy).
Package base64Captcha supports digits, numbers,alphabet, arithmetic, audio and digit-alphabet captcha. base64Captcha is used for fast development of RESTful APIs, web apps and backend services in Go. give a string identifier to the package and it returns with a base64-encoding-png-string
bindata converts any file into managable Go source code. Useful for embedding binary data into a go program. The file data is optionally gzip compressed before being converted to a raw byte slice. The following paragraphs cover some of the customization options which can be specified in the Config struct, which must be passed into the Translate() call. When used with the `Debug` option, the generated code does not actually include the asset data. Instead, it generates function stubs which load the data from the original file on disk. The asset API remains identical between debug and release builds, so your code will not have to change. This is useful during development when you expect the assets to change often. The host application using these assets uses the same API in both cases and will not have to care where the actual data comes from. An example is a Go webserver with some embedded, static web content like HTML, JS and CSS files. While developing it, you do not want to rebuild the whole server and restart it every time you make a change to a bit of javascript. You just want to build and launch the server once. Then just press refresh in the browser to see those changes. Embedding the assets with the `debug` flag allows you to do just that. When you are finished developing and ready for deployment, just re-invoke `go-bindata` without the `-debug` flag. It will now embed the latest version of the assets. The `NoMemCopy` option will alter the way the output file is generated. It will employ a hack that allows us to read the file data directly from the compiled program's `.rodata` section. This ensures that when we call call our generated function, we omit unnecessary memcopies. The downside of this, is that it requires dependencies on the `reflect` and `unsafe` packages. These may be restricted on platforms like AppEngine and thus prevent you from using this mode. Another disadvantage is that the byte slice we create, is strictly read-only. For most use-cases this is not a problem, but if you ever try to alter the returned byte slice, a runtime panic is thrown. Use this mode only on target platforms where memory constraints are an issue. The default behaviour is to use the old code generation method. This prevents the two previously mentioned issues, but will employ at least one extra memcopy and thus increase memory requirements. For instance, consider the following two examples: This would be the default mode, using an extra memcopy but gives a safe implementation without dependencies on `reflect` and `unsafe`: Here is the same functionality, but uses the `.rodata` hack. The byte slice returned from this example can not be written to without generating a runtime error. The NoCompress option indicates that the supplied assets are *not* GZIP compressed before being turned into Go code. The data should still be accessed through a function call, so nothing changes in the API. This feature is useful if you do not care for compression, or the supplied resource is already compressed. Doing it again would not add any value and may even increase the size of the data. The default behaviour of the program is to use compression. The keys used in the `_bindata` map are the same as the input file name passed to `go-bindata`. This includes the path. In most cases, this is not desireable, as it puts potentially sensitive information in your code base. For this purpose, the tool supplies another command line flag `-prefix`. This accepts a portion of a path name, which should be stripped off from the map keys and function names. For example, running without the `-prefix` flag, we get: Running with the `-prefix` flag, we get: With the optional Tags field, you can specify any go build tags that must be fulfilled for the output file to be included in a build. This is useful when including binary data in multiple formats, where the desired format is specified at build time with the appropriate tags. The tags are appended to a `// +build` line in the beginning of the output file and must follow the build tags syntax specified by the go tool.
Package csrf (gorilla/csrf) provides Cross Site Request Forgery (CSRF) prevention middleware for Go web applications & services. It includes: * The `csrf.Protect` middleware/handler provides CSRF protection on routes attached to a router or a sub-router. * A `csrf.Token` function that provides the token to pass into your response, whether that be a HTML form or a JSON response body. * ... and a `csrf.TemplateField` helper that you can pass into your `html/template` templates to replace a `{{ .csrfField }}` template tag with a hidden input field. gorilla/csrf is easy to use: add the middleware to individual handlers with the below: ... and then collect the token with `csrf.Token(r)` before passing it to the template, JSON body or HTTP header (you pick!). gorilla/csrf inspects the form body (first) and HTTP headers (second) on subsequent POST/PUT/PATCH/DELETE/etc. requests for the token. Note that the authentication key passed to `csrf.Protect([]byte(key))` should be 32-bytes long and persist across application restarts. Generating a random key won't allow you to authenticate existing cookies and will break your CSRF validation. Here's the common use-case: HTML forms you want to provide CSRF protection for, in order to protect malicious POST requests being made: Note that the CSRF middleware will (by necessity) consume the request body if the token is passed via POST form values. If you need to consume this in your handler, insert your own middleware earlier in the chain to capture the request body. You can also send the CSRF token in the response header. This approach is useful if you're using a front-end JavaScript framework like Ember or Angular, or are providing a JSON API: If you're writing a client that's supposed to mimic browser behavior, make sure to send back the CSRF cookie (the default name is _gorilla_csrf, but this can be changed with the CookieName Option) along with either the X-CSRF-Token header or the gorilla.csrf.Token form field. In addition: getting CSRF protection right is important, so here's some background: * This library generates unique-per-request (masked) tokens as a mitigation against the BREACH attack (http://breachattack.com/). * The 'base' (unmasked) token is stored in the session, which means that multiple browser tabs won't cause a user problems as their per-request token is compared with the base token. * Operates on a "whitelist only" approach where safe (non-mutating) HTTP methods (GET, HEAD, OPTIONS, TRACE) are the *only* methods where token validation is not enforced. * The design is based on the battle-tested Django (https://docs.djangoproject.com/en/1.8/ref/csrf/) and Ruby on Rails (http://api.rubyonrails.org/classes/ActionController/RequestForgeryProtection.html) approaches. * Cookies are authenticated and based on the securecookie (https://github.com/gorilla/securecookie) library. They're also Secure (issued over HTTPS only) and are HttpOnly by default, because sane defaults are important. * Go's `crypto/rand` library is used to generate the 32 byte (256 bit) tokens and the one-time-pad used for masking them. This library does not seek to be adventurous.
Package selenium provides a client to drive web browser-based automation and testing. See the example below for how to get started with this API. This package can depend on several binaries being available, depending on which browsers will be used and how. To avoid needing to manage these dependencies, use a cloud-based browser testing environment, like Sauce Labs, BrowserStack or similar. Otherwise, use the methods provided by this API to specify the paths to the dependencies, which will have to be downloaded separately. This example shows how to navigate to a http://play.golang.org page, input a short program, run it, and inspect its output. If you want to actually run this example:
Package codepipeline provides the API client, operations, and parameter types for AWS CodePipeline. This is the CodePipeline API Reference. This guide provides descriptions of the actions and data types for CodePipeline. Some functionality for your pipeline can only be configured through the API. For more information, see the CodePipeline User Guide. You can use the CodePipeline API to work with pipelines, stages, actions, and transitions. Pipelines are models of automated release processes. Each pipeline is uniquely named, and consists of stages, actions, and transitions. You can work with pipelines by calling: CreatePipeline DeletePipeline GetPipeline GetPipelineExecution GetPipelineState ListActionExecutions ListPipelines ListPipelineExecutions StartPipelineExecution StopPipelineExecution UpdatePipeline Pipelines include stages. Each stage contains one or more actions that must complete before the next stage begins. A stage results in success or failure. If a stage fails, the pipeline stops at that stage and remains stopped until either a new version of an artifact appears in the source location, or a user takes action to rerun the most recent artifact through the pipeline. You can call GetPipelineState, which displays the status of a pipeline, including the status of stages in the pipeline, or GetPipeline, which returns the entire structure of the pipeline, including the stages of that pipeline. For more information about the structure of stages and actions, see CodePipeline Pipeline Structure Reference. Pipeline stages include actions that are categorized into categories such as source or build actions performed in a stage of a pipeline. For example, you can use a source action to import artifacts into a pipeline from a source such as Amazon S3. Like stages, you do not work with actions directly in most cases, but you do define and interact with actions when working with pipeline operations such as CreatePipelineand GetPipelineState. Valid action categories are: Source Build Test Deploy Approval Invoke Pipelines also include transitions, which allow the transition of artifacts from one stage to the next in a pipeline after the actions in one stage complete. You can work with transitions by calling: DisableStageTransition EnableStageTransition For third-party integrators or developers who want to create their own integrations with CodePipeline, the expected sequence varies from the standard API user. To integrate with CodePipeline, developers need to work with the following items: Jobs, which are instances of an action. For example, a job for a source action might import a revision of an artifact from a source. You can work with jobs by calling: AcknowledgeJob GetJobDetails PollForJobs PutJobFailureResult PutJobSuccessResult Third party jobs, which are instances of an action created by a partner action and integrated into CodePipeline. Partner actions are created by members of the Amazon Web Services Partner Network. You can work with third party jobs by calling: AcknowledgeThirdPartyJob GetThirdPartyJobDetails PollForThirdPartyJobs PutThirdPartyJobFailureResult PutThirdPartyJobSuccessResult
Package configservice provides the API client, operations, and parameter types for AWS Config. Config provides a way to keep track of the configurations of all the Amazon Web Services resources associated with your Amazon Web Services account. You can use Config to get the current and historical configurations of each Amazon Web Services resource and also to get information about the relationship between the resources. An Amazon Web Services resource can be an Amazon Compute Cloud (Amazon EC2) instance, an Elastic Block Store (EBS) volume, an elastic network Interface (ENI), or a security group. For a complete list of resources currently supported by Config, see Supported Amazon Web Services resources. You can access and manage Config through the Amazon Web Services Management Console, the Amazon Web Services Command Line Interface (Amazon Web Services CLI), the Config API, or the Amazon Web Services SDKs for Config. This reference guide contains documentation for the Config API and the Amazon Web Services CLI commands that you can use to manage Config. The Config API uses the Signature Version 4 protocol for signing requests. For more information about how to sign a request with this protocol, see Signature Version 4 Signing Process. For detailed information about Config features and their associated actions or commands, as well as how to work with Amazon Web Services Management Console, see What Is Configin the Config Developer Guide.
Package sfn provides the API client, operations, and parameter types for AWS Step Functions. Step Functions coordinates the components of distributed applications and microservices using visual workflows. You can use Step Functions to build applications from individual components, each of which performs a discrete function, or task, allowing you to scale and change applications quickly. Step Functions provides a console that helps visualize the components of your application as a series of steps. Step Functions automatically triggers and tracks each step, and retries steps when there are errors, so your application executes predictably and in the right order every time. Step Functions logs the state of each step, so you can quickly diagnose and debug any issues. Step Functions manages operations and underlying infrastructure to ensure your application is available at any scale. You can run tasks on Amazon Web Services, your own servers, or any system that has access to Amazon Web Services. You can access and use Step Functions using the console, the Amazon Web Services SDKs, or an HTTP API. For more information about Step Functions, see the Step Functions Developer Guide. If you use the Step Functions API actions using Amazon Web Services SDK integrations, make sure the API actions are in camel case and parameter names are in Pascal case. For example, you could use Step Functions API action startSyncExecution and specify its parameter as StateMachineArn .
Package appconfig provides the API client, operations, and parameter types for Amazon AppConfig. AppConfig feature flags and dynamic configurations help software builders quickly and securely adjust application behavior in production environments without full code deployments. AppConfig speeds up software release frequency, improves application resiliency, and helps you address emergent issues more quickly. With feature flags, you can gradually release new capabilities to users and measure the impact of those changes before fully deploying the new capabilities to all users. With operational flags and dynamic configurations, you can update block lists, allow lists, throttling limits, logging verbosity, and perform other operational tuning to quickly respond to issues in production environments. AppConfig is a capability of Amazon Web Services Systems Manager. Despite the fact that application configuration content can vary greatly from application to application, AppConfig supports the following use cases, which cover a broad spectrum of customer needs: Feature flags and toggles - Safely release new capabilities to your customers in a controlled environment. Instantly roll back changes if you experience a problem. Application tuning - Carefully introduce application changes while testing the impact of those changes with users in production environments. Allow list or block list - Control access to premium features or instantly block specific users without deploying new code. Centralized configuration storage - Keep your configuration data organized and consistent across all of your workloads. You can use AppConfig to deploy configuration data stored in the AppConfig hosted configuration store, Secrets Manager, Systems Manager, Parameter Store, or Amazon S3. This section provides a high-level description of how AppConfig works and how you get started. 1. Identify configuration values in code you want to manage in the cloud Before you start creating AppConfig artifacts, we recommend you identify configuration data in your code that you want to dynamically manage using AppConfig. Good examples include feature flags or toggles, allow and block lists, logging verbosity, service limits, and throttling rules, to name a few. If your configuration data already exists in the cloud, you can take advantage of AppConfig validation, deployment, and extension features to further streamline configuration data management. 2. Create an application namespace To create a namespace, you create an AppConfig artifact called an application. An application is simply an organizational construct like a folder. 3. Create environments For each AppConfig application, you define one or more environments. An environment is a logical grouping of targets, such as applications in a Beta or Production environment, Lambda functions, or containers. You can also define environments for application subcomponents, such as the Web , Mobile , and Back-end . You can configure Amazon CloudWatch alarms for each environment. The system monitors alarms during a configuration deployment. If an alarm is triggered, the system rolls back the configuration. 4. Create a configuration profile A configuration profile includes, among other things, a URI that enables AppConfig to locate your configuration data in its stored location and a profile type. AppConfig supports two configuration profile types: feature flags and freeform configurations. Feature flag configuration profiles store their data in the AppConfig hosted configuration store and the URI is simply hosted . For freeform configuration profiles, you can store your data in the AppConfig hosted configuration store or any Amazon Web Services service that integrates with AppConfig, as described in Creating a free form configuration profilein the the AppConfig User Guide. A configuration profile can also include optional validators to ensure your configuration data is syntactically and semantically correct. AppConfig performs a check using the validators when you start a deployment. If any errors are detected, the deployment rolls back to the previous configuration data. 5. Deploy configuration data When you create a new deployment, you specify the following: An application ID A configuration profile ID A configuration version An environment ID where you want to deploy the configuration data A deployment strategy ID that defines how fast you want the changes to take effect When you call the StartDeployment API action, AppConfig performs the following tasks: Retrieves the configuration data from the underlying data store by using the location URI in the configuration profile. Verifies the configuration data is syntactically and semantically correct by using the validators you specified when you created your configuration profile. Caches a copy of the data so it is ready to be retrieved by your application. This cached copy is called the deployed data. 6. Retrieve the configuration You can configure AppConfig Agent as a local host and have the agent poll AppConfig for configuration updates. The agent calls the StartConfigurationSessionand GetLatestConfiguration API actions and caches your configuration data locally. To retrieve the data, your application makes an HTTP call to the localhost server. AppConfig Agent supports several use cases, as described in Simplified retrieval methodsin the the AppConfig User Guide. If AppConfig Agent isn't supported for your use case, you can configure your application to poll AppConfig for configuration updates by directly calling the StartConfigurationSession and GetLatestConfigurationAPI actions. This reference is intended to be used with the AppConfig User Guide.
Package elasticbeanstalk provides the API client, operations, and parameter types for AWS Elastic Beanstalk. AWS Elastic Beanstalk makes it easy for you to create, deploy, and manage scalable, fault-tolerant applications running on the Amazon Web Services cloud. For more information about this product, go to the AWS Elastic Beanstalk details page. The location of the latest AWS Elastic Beanstalk WSDL is https://elasticbeanstalk.s3.amazonaws.com/doc/2010-12-01/AWSElasticBeanstalk.wsdl. To install the Software Development Kits (SDKs), Integrated Development Environment (IDE) Toolkits, and command line tools that enable you to access the API, go to Tools for Amazon Web Services. For a list of region-specific endpoints that AWS Elastic Beanstalk supports, go to Regions and Endpointsin the Amazon Web Services Glossary.
bindata converts any file into manageable Go source code. Useful for embedding binary data into a go program. The file data is optionally gzip compressed before being converted to a raw byte slice. The following paragraphs cover some of the customization options which can be specified in the Config struct, which must be passed into the Translate() call. When used with the `Debug` option, the generated code does not actually include the asset data. Instead, it generates function stubs which load the data from the original file on disk. The asset API remains identical between debug and release builds, so your code will not have to change. This is useful during development when you expect the assets to change often. The host application using these assets uses the same API in both cases and will not have to care where the actual data comes from. An example is a Go webserver with some embedded, static web content like HTML, JS and CSS files. While developing it, you do not want to rebuild the whole server and restart it every time you make a change to a bit of javascript. You just want to build and launch the server once. Then just press refresh in the browser to see those changes. Embedding the assets with the `debug` flag allows you to do just that. When you are finished developing and ready for deployment, just re-invoke `go-bindata` without the `-debug` flag. It will now embed the latest version of the assets. The `NoMemCopy` option will alter the way the output file is generated. It will employ a hack that allows us to read the file data directly from the compiled program's `.rodata` section. This ensures that when we call call our generated function, we omit unnecessary memcopies. The downside of this, is that it requires dependencies on the `reflect` and `unsafe` packages. These may be restricted on platforms like AppEngine and thus prevent you from using this mode. Another disadvantage is that the byte slice we create, is strictly read-only. For most use-cases this is not a problem, but if you ever try to alter the returned byte slice, a runtime panic is thrown. Use this mode only on target platforms where memory constraints are an issue. The default behaviour is to use the old code generation method. This prevents the two previously mentioned issues, but will employ at least one extra memcopy and thus increase memory requirements. For instance, consider the following two examples: This would be the default mode, using an extra memcopy but gives a safe implementation without dependencies on `reflect` and `unsafe`: Here is the same functionality, but uses the `.rodata` hack. The byte slice returned from this example can not be written to without generating a runtime error. The NoCompress option indicates that the supplied assets are *not* GZIP compressed before being turned into Go code. The data should still be accessed through a function call, so nothing changes in the API. This feature is useful if you do not care for compression, or the supplied resource is already compressed. Doing it again would not add any value and may even increase the size of the data. The default behaviour of the program is to use compression. The keys used in the `_bindata` map are the same as the input file name passed to `go-bindata`. This includes the path. In most cases, this is not desirable, as it puts potentially sensitive information in your code base. For this purpose, the tool supplies another command line flag `-prefix`. This accepts a portion of a path name, which should be stripped off from the map keys and function names. For example, running without the `-prefix` flag, we get: Running with the `-prefix` flag, we get: With the optional Tags field, you can specify any go build tags that must be fulfilled for the output file to be included in a build. This is useful when including binary data in multiple formats, where the desired format is specified at build time with the appropriate tags. The tags are appended to a `// +build` line in the beginning of the output file and must follow the build tags syntax specified by the go tool.
bindata converts any file into managable Go source code. Useful for embedding binary data into a go program. The file data is optionally gzip compressed before being converted to a raw byte slice. The following paragraphs cover some of the customization options which can be specified in the Config struct, which must be passed into the Translate() call. When used with the `Debug` option, the generated code does not actually include the asset data. Instead, it generates function stubs which load the data from the original file on disk. The asset API remains identical between debug and release builds, so your code will not have to change. This is useful during development when you expect the assets to change often. The host application using these assets uses the same API in both cases and will not have to care where the actual data comes from. An example is a Go webserver with some embedded, static web content like HTML, JS and CSS files. While developing it, you do not want to rebuild the whole server and restart it every time you make a change to a bit of javascript. You just want to build and launch the server once. Then just press refresh in the browser to see those changes. Embedding the assets with the `debug` flag allows you to do just that. When you are finished developing and ready for deployment, just re-invoke `go-bindata` without the `-debug` flag. It will now embed the latest version of the assets. The `NoMemCopy` option will alter the way the output file is generated. It will employ a hack that allows us to read the file data directly from the compiled program's `.rodata` section. This ensures that when we call call our generated function, we omit unnecessary memcopies. The downside of this, is that it requires dependencies on the `reflect` and `unsafe` packages. These may be restricted on platforms like AppEngine and thus prevent you from using this mode. Another disadvantage is that the byte slice we create, is strictly read-only. For most use-cases this is not a problem, but if you ever try to alter the returned byte slice, a runtime panic is thrown. Use this mode only on target platforms where memory constraints are an issue. The default behaviour is to use the old code generation method. This prevents the two previously mentioned issues, but will employ at least one extra memcopy and thus increase memory requirements. For instance, consider the following two examples: This would be the default mode, using an extra memcopy but gives a safe implementation without dependencies on `reflect` and `unsafe`: Here is the same functionality, but uses the `.rodata` hack. The byte slice returned from this example can not be written to without generating a runtime error. The NoCompress option indicates that the supplied assets are *not* GZIP compressed before being turned into Go code. The data should still be accessed through a function call, so nothing changes in the API. This feature is useful if you do not care for compression, or the supplied resource is already compressed. Doing it again would not add any value and may even increase the size of the data. The default behaviour of the program is to use compression. The keys used in the `_bindata` map are the same as the input file name passed to `go-bindata`. This includes the path. In most cases, this is not desireable, as it puts potentially sensitive information in your code base. For this purpose, the tool supplies another command line flag `-prefix`. This accepts a portion of a path name, which should be stripped off from the map keys and function names. For example, running without the `-prefix` flag, we get: Running with the `-prefix` flag, we get: With the optional Tags field, you can specify any go build tags that must be fulfilled for the output file to be included in a build. This is useful when including binary data in multiple formats, where the desired format is specified at build time with the appropriate tags. The tags are appended to a `// +build` line in the beginning of the output file and must follow the build tags syntax specified by the go tool.
Package codedeploy provides the API client, operations, and parameter types for AWS CodeDeploy. CodeDeploy is a deployment service that automates application deployments to Amazon EC2 instances, on-premises instances running in your own facility, serverless Lambda functions, or applications in an Amazon ECS service. You can deploy a nearly unlimited variety of application content, such as an updated Lambda function, updated applications in an Amazon ECS service, code, web and configuration files, executables, packages, scripts, multimedia files, and so on. CodeDeploy can deploy application content stored in Amazon S3 buckets, GitHub repositories, or Bitbucket repositories. You do not need to make changes to your existing code before you can use CodeDeploy. CodeDeploy makes it easier for you to rapidly release new features, helps you avoid downtime during application deployment, and handles the complexity of updating your applications, without many of the risks associated with error-prone manual deployments. Use the information in this guide to help you work with the following CodeDeploy components: Application: A name that uniquely identifies the application you want to deploy. CodeDeploy uses this name, which functions as a container, to ensure the correct combination of revision, deployment configuration, and deployment group are referenced during a deployment. Deployment group: A set of individual instances, CodeDeploy Lambda deployment configuration settings, or an Amazon ECS service and network details. A Lambda deployment group specifies how to route traffic to a new version of a Lambda function. An Amazon ECS deployment group specifies the service created in Amazon ECS to deploy, a load balancer, and a listener to reroute production traffic to an updated containerized application. An Amazon EC2/On-premises deployment group contains individually tagged instances, Amazon EC2 instances in Amazon EC2 Auto Scaling groups, or both. All deployment groups can specify optional trigger, alarm, and rollback settings. Deployment configuration: A set of deployment rules and deployment success and failure conditions used by CodeDeploy during a deployment. Deployment: The process and the components used when updating a Lambda function, a containerized application in an Amazon ECS service, or of installing content on one or more instances. Application revisions: For an Lambda deployment, this is an AppSpec file that specifies the Lambda function to be updated and one or more functions to validate deployment lifecycle events. For an Amazon ECS deployment, this is an AppSpec file that specifies the Amazon ECS task definition, container, and port where production traffic is rerouted. For an EC2/On-premises deployment, this is an archive file that contains source content—source code, webpages, executable files, and deployment scripts—along with an AppSpec file. Revisions are stored in Amazon S3 buckets or GitHub repositories. For Amazon S3, a revision is uniquely identified by its Amazon S3 object key and its ETag, version, or both. For GitHub, a revision is uniquely identified by its commit ID. This guide also contains information to help you get details about the instances in your deployments, to make on-premises instances available for CodeDeploy deployments, to get details about a Lambda function deployment, and to get details about Amazon ECS service deployments. CodeDeploy User Guide CodeDeploy API Reference Guide CLI Reference for CodeDeploy CodeDeploy Developer Forum
Package eventbridge provides the API client, operations, and parameter types for Amazon EventBridge. Amazon EventBridge helps you to respond to state changes in your Amazon Web Services resources. When your resources change state, they automatically send events to an event stream. You can create rules that match selected events in the stream and route them to targets to take action. You can also use rules to take action on a predetermined schedule. For example, you can configure rules to: Automatically invoke an Lambda function to update DNS entries when an event notifies you that Amazon EC2 instance enters the running state. Direct specific API records from CloudTrail to an Amazon Kinesis data stream for detailed analysis of potential security or availability risks. Periodically invoke a built-in target to create a snapshot of an Amazon EBS volume. For more information about the features of Amazon EventBridge, see the Amazon EventBridge User Guide.
Package acmpca provides the API client, operations, and parameter types for AWS Certificate Manager Private Certificate Authority. This is the Amazon Web Services Private Certificate Authority API Reference. It provides descriptions, syntax, and usage examples for each of the actions and data types involved in creating and managing a private certificate authority (CA) for your organization. The documentation for each action shows the API request parameters and the JSON response. Alternatively, you can use one of the Amazon Web Services SDKs to access an API that is tailored to the programming language or platform that you prefer. For more information, see Amazon Web Services SDKs. Each Amazon Web Services Private CA API operation has a quota that determines the number of times the operation can be called per second. Amazon Web Services Private CA throttles API requests at different rates depending on the operation. Throttling means that Amazon Web Services Private CA rejects an otherwise valid request because the request exceeds the operation's quota for the number of requests per second. When a request is throttled, Amazon Web Services Private CA returns a ThrottlingExceptionerror. Amazon Web Services Private CA does not guarantee a minimum request rate for APIs. To see an up-to-date list of your Amazon Web Services Private CA quotas, or to request a quota increase, log into your Amazon Web Services account and visit the Service Quotasconsole.